FUNDAMENTAL PROBABILITY

A Computational Approach

Marc S. Paolella

Swiss Banking Institute, University of Zurich, Switzerland

Probability is a vital measure in numerous disciplines, from bioinformatics and econometrics to finance/insurance and computer science. Developed from a successful course, Fundamental Probability: A Computational Approach provides an engaging and hands-on introduction to this important topic. Whilst the theory is explored in detail, this book also emphasises practical applications, with the presentation of a large variety of examples and exercises, along with generous use of computational tools.

Based on international teaching experience with students of statistics, mathematics, finance and econometrics, the book:

- Presents new, innovative material alongside the classic theory.
- Goes beyond standard presentations by carefully introducing and discussing more complex subject matter, including a richer use of combinatorics, runs and occupancy distributions, various multivariate sampling schemes, fattailed distributions, and several basic concepts used in finance.
- Emphasises computational matters and programming methods via generous use of examples in MATLAB.
- Includes a large, self-contained Calculus/Analysis appendix with derivations
 of all required tools, such as Leibniz' rule, exchange of derivative and integral,
 Fubini's theorem, and univariate and multivariate Taylor series.
- Presents over 150 end-of-chapter exercises, graded in terms of their difficulty, and accompanied by a full set of solutions online.

This book is intended as an introduction to the theory of probability for students in biology, mathematics, statistics, economics, engineering, finance, and computer science who possess the prerequisite knowledge of basic calculus and linear algebra.

Preface A note to the student (and instructor) A note to the instructor (and student)					
A	cknow	vledgements	xxi		
0	0 Introduction				
Pa	art I	Basic Probability	7		
1	Con	abinatorics	9		
	1.1	Basic counting	9		
	1.2	Generalized binomial coefficients	13		
	1.3	Combinatoric identities and the use of induction	15		
	1.4	The binomial and multinomial theorems	18		
		1.4.1 The binomial theorem	18		
		1.4.2 An extension of the binomial theorem	23		
		1.4.3 The multinomial theorem	27		
	1.5	The gamma and beta functions	28		
		1.5.1 The gamma function	28		
		1.5.2 The beta function	31		
	1.6	Problems	36		
2	Probability spaces and counting		43		
	2.1	Introducing counting and occupancy problems	43		
	2.2	Probability spaces	47		
		2.2.1 Introduction	47		
		2.2.2 Definitions	49		
	2.3	Properties Properties	58		

		2.3.1	Basic properties	58
		2.3.2	Advanced properties	59
		2.3.3	A theoretical property	67
	2.4	Proble	ems	68
3	Sym	metric	spaces and conditioning	73
	3.1	Applie	cations with symmetric probability spaces	73
	3.2	Condi	tional probability and independence	85
		3.2.1	Total probability and Bayes' rule	87
		3.2.2	Extending the law of total probability	93
		3.2.3	Statistical paradoxes and fallacies	96
	3.3	The p	roblem of the points	97
		3.3.1	Three solutions	97
		3.3.2	Further gambling problems	,,
		3.3.3	Some historical references	100
	3.4	Proble	ems	101
Pa	art I	I Dis	screte Random Variables	111
4	Univ	variate	random variables	113
	4.1	Defini	itions and properties	113
		4.1.1	Basic definitions and properties	113
		4.1.2	Further definitions and properties	117
	4.2	Discre	ete sampling schemes	120
		4.2.1	Bernoulli and binomial	121
		4.2.2	Hypergeometric	123
		4.2.3	Geometric and negative binomial	125
		4.2.4	Inverse hypergeometric	
		4.2.5	Poisson approximations	130
		4.2.6	Occupancy distributions	133
	4.3	Trans	formations	140
	4.4	Mome	ents make a land a set I	141
		4.4.1	Expected value of X	141
		4.4.2	Higher-order moments	143
		4.4.3	Jensen's inequality	151
	4.5	Poisso	on processes	154
	4.6	Proble	ems and the company of the and the second	156
5	Mul	tivaria	te random variables	165
	5.1	Multi	variate density and distribution	165
		5.1.1	Joint cumulative distribution functions	166

	5.1.2 Joint probability mass and density functions	168
5.2	Fundamental properties of multivariate random variables	171
	5.2.1 Marginal distributions	171/
	5.2.2 Independence	173
	5.2.3 Exchangeability	174
	5.2.4 Transformations	175
	5.2.5 Moments	176
5.3	Discrete sampling schemes	182
	5.3.1 Multinomial	182
	5.3.2 Multivariate hypergeometric	188
	5.3.3 Multivariate negative binomial	190
	5.3.4 Multivariate inverse hypergeometric	192
5.4	Problems	194
Sun	ns of random variables	197
6.1	Mean and variance	197
6.2	Use of exchangeable Bernoulli random variables	199
	6.2.1 Examples with birthdays	202
6.3	Runs distributions	206
6.4	Random variable decomposition	218
	6.4.1 Binomial, negative binomial and Poisson	218
	6.4.2 Hypergeometric	220
	6.4.3 Inverse hypergeometric	222
6.5	General linear combination of two random variables	227
6.6	Problems	232
art I	II Continuous Random Variables	237
Cor	ntinuous univariate random variables	239
7.1	Most prominent distributions	239
7.1	Other popular distributions	263
7.3		269
7.5	7.3.1 Examples of one-to-one transformations	271
	7.3.2 Many-to-one transformations	273
7.4		275
1.4	7.4.1 Simulation	276
	7.4.2 Kernel density estimation	277
7.5		278

8	Join	nt and conditional random variables	285					
	8.1	Review of basic concepts	285					
	8.2	Conditional distributions	290					
		8.2.1 Discrete case	291					
		8.2.2 Continuous case	292					
		8.2.3 Conditional moments	304					
		8.2.4 Expected shortfall	310					
		8.2.5 Independence	311					
		8.2.6 Computing probabilities via conditioning	312					
	8.3	Problems	317					
9	Multivariate transformations		323					
	9.1	Basic transformation						
	9.2	The t and F distributions	329					
	9.3	Further aspects and important transformations	333					
	9.4	Problems	339					
		Temporal variance						
A	ppen	dices	343					
A	Calc	culus review	343					
	A.0	Recommended reading	343					
	A.1	Sets, functions and fundamental inequalities	345					
	A.2	Univariate calculus	350					
		A.2.1 Limits and continuity	351					
		A.2.2 Differentiation	352					
		A.2.3 Integration	364					
		A.2.4 Series	382					
	A.3	Multivariate calculus	413					
		A.3.1 Neighborhoods and open sets	413					
		A.3.2 Sequences, limits and continuity	414					
		A.3.3 Differentiation	416					
		A.3.4 Integration	425					
В	Nota	ation tables	435					
C	Diet	ribution tables						
	Disti	ribution tables	441					
Re	References							
Inc	Index							