Table of Contents

Pre	face	xiii
1.	Introduction: What Is Data Science?	
	Big Data and Data Science Hype	1 Sunm Filters, Na
	Getting Past the Hype	3
	Why Now?	4
	Datafication	A mod A wall 5
	The Current Landscape (with a Little History)	6
	Data Science Jobs	10
	A Data Science Profile	10
	Thought Experiment: Meta-Definition	13
	OK, So What Is a Data Scientist, Really?	14
	In Academia	14
	In Industry	15
2	Statistical Informed Evaluratory Data Analysis an	ed the Data Science
۷٠	Statistical Inference, Exploratory Data Analysis, an	
	Process.	
	Statistical Thinking in the Age of Big Data	17
	Statistical Inference	18
	Populations and Samples	19
	Populations and Samples of Big Data	21
	Big Data Can Mean Big Assumptions	24
	Modeling	26
	Exploratory Data Analysis	34
	Philosophy of Exploratory Data Analysis Exercise: EDA	36
	The Data Science Process	41
	A Data Scientist's Role in This Process	
	A Data Scientists Role III This Process	43

	Thought Experiment: How Would You Simulate Chaos?	44
	Case Study: RealDirect	46
	How Does RealDirect Make Money?	47
	Exercise: RealDirect Data Strategy	48
3.	Algorithms	51
	Machine Learning Algorithms	52
	Three Basic Algorithms	54
	Linear Regression	55
	k-Nearest Neighbors (k-NN)	71
	k-means	82
	Exercise: Basic Machine Learning Algorithms	86
	Solutions	86
	Summing It All Up	91
	Thought Experiment: Automated Statistician	92
4.	Spam Filters, Naive Bayes, and Wrangling	93
	Thought Experiment: Learning by Example	93
	Why Won't Linear Regression Work for Filtering Spam?	95
	How About k-nearest Neighbors?	96
	Naive Bayes	98
	Bayes Law	98
	A Spam Filter for Individual Words	99
	A Spam Filter That Combines Words: Naive Bayes	101
	Fancy It Up: Laplace Smoothing	103
	Comparing Naive Bayes to k-NN	105
	Sample Code in bash	105
	Scraping the Web: APIs and Other Tools	106
	Jake's Exercise: Naive Bayes for Article Classification	108
	Sample R Code for Dealing with the NYT API	110
5.	Logistic Regression	. 113
	Thought Experiments	114
	Classifiers	115
	Runtime	116
	You	117
	Interpretability	117
	Scalability	117
	M6D Logistic Regression Case Study	118
	Click Models	118
	The Underlying Math	120

Estimating α and β	122
Newton's Method	124
Stochastic Gradient Descent	124
Implementation	124
Evaluation	125
Media 6 Degrees Exercise	128
Sample R Code	129
6. Time Stamps and Financial Modeling	135
Kyle Teague and GetGlue	135
Timestamps	137
Exploratory Data Analysis (EDA)	138
Metrics and New Variables or Features	142
What's Next?	142
Cathy O'Neil	144
Thought Experiment	144
Financial Modeling	145
In-Sample, Out-of-Sample, and Causality	146
Preparing Financial Data	148
Log Returns	149
Example: The S&P Index	151
Working out a Volatility Measurement	153
Exponential Downweighting	155
The Financial Modeling Feedback Loop	156
Why Regression?	158
Adding Priors	159
A Baby Model	159
Exercise: GetGlue and Timestamped Event Data	162
Exercise: Financial Data	164
7. Extracting Meaning from Data	165
William Cukierski	165
Background: Data Science Competitions	166
Background: Crowdsourcing	167
The Kaggle Model	170
A Single Contestant	170
Their Customers	172
Thought Experiment: What Are the Ethical Implications of a	
Robo-Grader?	174
Feature Selection	176
Example: User Retention	177

	Filters	181
	Wrappers	181
	Embedded Methods: Decision Trees	184
	Entropy	186
	The Decision Tree Algorithm	187
	Handling Continuous Variables in Decision Trees	188
	Random Forests	190
	User Retention: Interpretability Versus Predictive Power	192
	David Huffaker: Google's Hybrid Approach to Social	
	Research	193
	Moving from Descriptive to Predictive	194
	Social at Google	196
	Privacy	196
	Thought Experiment: What Is the Best Way to Decrease	
	Concern and Increase Understanding and Control?	197
8.	Recommendation Engines: Building a User-Facing Data Product	
	at Scale	. 199
	A Real-World Recommendation Engine	200
	Nearest Neighbor Algorithm Review	202
	Some Problems with Nearest Neighbors	202
	Beyond Nearest Neighbor: Machine Learning	
	Classification	204
	The Dimensionality Problem	206
	Singular Value Decomposition (SVD)	207
	Important Properties of SVD	208
	Principal Component Analysis (PCA)	209
	Alternating Least Squares	211
	Fix V and Update U	212
	Last Thoughts on These Algorithms	213
	Thought Experiment: Filter Bubbles	213
	Exercise: Build Your Own Recommendation System	214
	Sample Code in Python	214
9.	Data Visualization and Fraud Detection	. 217
	Data Visualization History	217
	Gabriel Tarde	218
	Mark's Thought Experiment	219
	What Is Data Science, Redux?	220
	Processing	221
	Franco Moretti	221

	A Sample of Data Visualization Projects	222
	Mark's Data Visualization Projects	227
	New York Times Lobby: Moveable Type	227
	Project Cascade: Lives on a Screen	230
	Cronkite Plaza	231
	eBay Transactions and Books	232
	Public Theater Shakespeare Machine	234
	Goals of These Exhibits	235
	Data Science and Risk	235
	About Square	236
	The Risk Challenge	237
	The Trouble with Performance Estimation	240
	Model Building Tips	244
	Data Visualization at Square	248
	Ian's Thought Experiment	249
	Data Visualization for the Rest of Us	250
	Data Visualization Exercise	251
10.	Social Networks and Data Journalism	253
	Social Network Analysis at Morning Analytics	254
	Case-Attribute Data versus Social Network Data	254
	Social Network Analysis	255
	Terminology from Social Networks	256
	Centrality Measures	257
	The Industry of Centrality Measures	258
	Thought Experiment	259
	Morningside Analytics	260
	How Visualizations Help Us Find Schools of Fish	262
	More Background on Social Network Analysis from a	
	Statistical Point of View	263
	Representations of Networks and Eigenvalue Centrality	264
	A First Example of Random Graphs: The Erdos-Renyi	
	Model	265
	A Second Example of Random Graphs: The Exponential	
	Random Graph Model	266
	Data Journalism	269
	A Bit of History on Data Journalism	269
	Writing Technical Journalism: Advice from an Expert	270
11.	Causality	273
	Correlation Doesn't Imply Causation	274

	Asking Causal Questions	274
	Confounders: A Dating Example	275
	OK Cupid's Attempt	276
	The Gold Standard: Randomized Clinical Trials	279
	A/B Tests	280
	Second Best: Observational Studies	283
	Simpson's Paradox	283
	The Rubin Causal Model	285
	Visualizing Causality	286
	Definition: The Causal Effect	287
	Three Pieces of Advice	289
12.	Epidemiology	291
HI	Madigan's Background	291
	Thought Experiment	292
	Modern Academic Statistics	293
	Medical Literature and Observational Studies	293
	Stratification Does Not Solve the Confounder Problem	294
	What Do People Do About Confounding Things in	neZ 0
	Practice?	295
	Is There a Better Way?	296
	Research Experiment (Observational Medical Outcomes	
	Partnership)	298
	Closing Thought Experiment	303
13.	Lessons Learned from Data Competitions: Data Leakage and M	odel
	Evaluation	. 305
	Claudia's Data Scientist Profile	306
	The Life of a Chief Data Scientist	306
	On Being a Female Data Scientist	307
	Data Mining Competitions	307
	How to Be a Good Modeler	309
	Data Leakage	309
	Market Predictions	310
	Amazon Case Study: Big Spenders	310
	A Jewelry Sampling Problem	311
	IBM Customer Targeting	311
	Breast Cancer Detection	312
	Pneumonia Prediction	313
	How to Avoid Leakage	315
	Evaluating Models	315

	Accuracy: Meh	317
	Probabilities Matter, Not 0s and 1s	317
	Choosing an Algorithm	320
	A Final Example	321
	Parting Thoughts	322
14.	Data Engineering: MapReduce, Pregel, and Hadoop	. 323
	About David Crawshaw	324
	Thought Experiment	325
	MapReduce	326
	Word Frequency Problem	327
	Enter MapReduce	330
	Other Examples of MapReduce	332
	What Can't MapReduce Do?	333
	Pregel	333
	About Josh Wills	334
	Thought Experiment	334
	On Being a Data Scientist	334
	Data Abundance Versus Data Scarcity	335
	Designing Models	335
	Economic Interlude: Hadoop	335
	A Brief Introduction to Hadoop	336
	Cloudera	337
	Back to Josh: Workflow	337
	So How to Get Started with Hadoop?	338
15.	The Students Speak	. 339
	Process Thinking	339
	Naive No Longer	341
	Helping Hands	342
	Your Mileage May Vary	344
	Bridging Tunnels	347
	Some of Our Work	347
16.	Next-Generation Data Scientists, Hubris, and Ethics	. 349
	What Just Happened?	349
	What Is Data Science (Again)?	350
	What Are Next-Gen Data Scientists?	352
	Being Problem Solvers	352
	Cultivating Soft Skills	353
	Being Question Askers	354

Being an Ethical Data Scientist Career Advice	356 361
Index	363