Guo-Neng Chen · Rodney Grapes

Granite Genesis: In-Situ Melting and Crustal Evolution

Granitic rocks are a major component of the continental crust and the many and complex problems of their origin that have confronted geologists for over 200 years still are presenting challenges today. Current ideas of granite formation involve lower crustal melting, segregation, ascent (as dykes or diapirs) and emplacement in the upper crust.

In this book we suggest an alternative model for the origin of granite in terms of in-situ melting – intracrustal convection that physically determines the process from partial melting of mid-upper crustal rocks to formation of a convecting magma layer. We illustrate the model using geological, geochemical and geophysical studies from Australia, North and South America, Europe and China, and conclude that heat convection within a crustal partial melt layer is essential for the formation of granite magma and that without convection, partial melting of rocks produces migmatites rather than granites. Granite is layer-like within the crust, and shape and size of granite bodies reflect the geometric relationship between an irregular upper surface of the crystallised magma layer and depth of erosion. Repeated melting of the crust generates downward-younging granite sequences. Chemical and isotopic compositions of granites indicate differentiation within the magma rather than different deep sources.

Of a number of proposed heat sources that can cause mid-upper crustal anatexis, large-scale crustal melting and formation of a granite magma layer is considered to be primarily related to plate convergence. A dynamic model with examples from the western Pacific continental margin in SE China and Tethys-Tibet is proposed to explain the relationship between plate convergence, granite and compressive deformation of the continental crust. Mineralisation related to granite formation, fault-block basins, formation of continental red beds and volcanism with examples from SE China, are also discussed in terms of the new model. In a final section, we introduce a new rock cycling model of the continental crust and the concept of Geochemical Fields of Elements, illustrating the unity between the microcosm and macrocosm of the natural world.

Audience: This book will be of interest to scientists, researchers and students in geology, geophysics, geochemistry and economic geology.

P	reface //	ix
A	cknowledgements	xi
1.	Introduction	1
	1.1. Rock genesis and its relationship to geosystems	1
	1.1.1. Sedimentary rocks and continental geology	1
	1.1.2. Basaltic rocks and plate tectonics	2
	1.1.3. 'Whence the granites'	2
	1.2. Granites, migmatites and granite problems	4
	1.2.1. Definitions	4
	1.2.1.1. Granite	4
	1.2.1.2. Migmatite: terminology and classification	5
	1.2.2. Granite magma intrusion and its problems	9
2.	Crustal melting: experiments and conditions	15
	2.1. Introduction	15
	2.2. Mineral melting	16
	2.2.1 Topology of melting	17
	2.2.2 Muscovite dehydration melting	17
	2.2.3 Biotite dehydration melting	19
	2.2.4 Hornblende dehydration melting	20
	2.2.5 Biotite and hornblende melting in granitic rocks	20
	2.2.6 Other hydrous minerals	21
	2.2.7 Suprasolidus decompression—dehydration reactions	23
	2.3. Rock melting-experimental evidence	24
	2.3.1 Melt compositions	24
	2.3.2 Restite compositions	27
	2.3.3 Rock solidi	27
	2.3.4 Melt fraction	27
	2.3.5 Conclusion	30
	2.4. Structure and composition of the crust	33
	2.5. Water in the crust	36

	2.6. Crustal heat and partial melting	42
	2.6.1. Introduction	42
	2.6.2. Thickened crust	44
	2.6.3. Burial of high-radiogenic rocks	45
	2.6.4. Shear heating	48
	2.6.5. Extension and removal of lithospheric mantle	51
	2.6.6. Intrusion of mafic magma	60
	2.6.7. Crustal thinning and 'diapiric' decompression	62
3.	In situ melting and intracrustal convection: granite magma layers	67
	3.1. Introduction	67
	3.1.1. Geophysical evidence for crustal melting	67
	3.1.1.1. Himalayas and Tibetan plateau	67
	3.1.1.2. The Andes	69
	3.1.2. $P-T$ conditions of granite, migmatite and granulite formation	70
	3.2. Crustal melting I: Initial melting and partial melt layer	72
	3.2.1. Formation of a partial melt layer	72
	3.2.2. Development of a partial melt layer in heterogeneous crust	75
	3.3. Crustal melting II: Convection and formation of magma layer	80
	3.3.1. Gravitational separation and formation of magma layer	80
	3.3.2. Convection and development of magma layer	80
	3.3.3. Upward thickening of magma layer	84
	3.4. Compositional variation within magma layer	85
	3.5. Magma layer, granite layer and granite bodies	85
	3.6. MI fluctuation (remelting) and granite sequence	87
	3.7. Conclusion	87
4.	Geological evidence for in situ melting origin of granite layers	91
	4.1. Migmatite to granite	91
	4.1.1. Thor–Odin dome, Canada	91
	4.1.2. Broken Hill, Australia	92
	4.1.3. Mt. Stafford, Australia	93
	4.1.4. Trois Seigneurs massif, Pyrenees	95
	4.1.5. Velay Dome, France	95
	4.1.6. Coastal migmatite–granite zone, SE China	97
	4.1.7. Cooma and Murrumbidgee, Australia	97
	4.1.8. Optica grey gneiss, Canada	103
	4.2. Contact metamorphism	104
	4.3. Xenoliths and mafic enclaves	104
	4.4. Granite layer and granite exposures	110
	4.5. Fluctuation of MI and downward-younging granite sequence	113
5.	Differentiation of magma layer: geochemical considerations	123
	5.1. Introduction	123
	5.2. Compositional variation	123
	5.3. Strontium isotopes	135

	5.4. Oxygen isotopes	138
	5.5. Rare earth elements	
	5.6 Summary	148
,		
0.	Mineralisation related to in situ granite formation	149
	6.1. Introduction	
	6.2. Source of ore-forming elements	149
	6.3. Formation and evolution of ore-bearing fluid	152
	6.4. Types of mineral deposits 6.4.1. Vein mineralisation	158
		158
	6.4.2. Disseminated mineralisation	159
	6.5. Age relations 6.6. Temperature distribution	160
	6.7 Formation and distribution of bullette and in the	161
	6.7. Formation and distribution of hydrothermal mineral deposits 6.7.1. Precipitation of ore-forming elements	
	6.7.2. Oxygen isotope evidence	162
	6.8. Mineralised depth horizons	164
	6.9. Mineralisation during elevated crustal temperatures	166
	6.10. Mineralisation during granite remelting	168
	6.10.1. Oxidation	174
	6.10.2. Uranium mineralisation	174
	5.11. Patterns of element redistribution and element fields	176
	5.12. Summary	182
		185
	Heat source for crustal magma layers: tectonic models	187
	7.1. Introduction	187
	7.2. Crustal temperature disturbance related to plate convergence	187
	7.3. Subduction and granite formation: western Pacific	107
	continental margin	191
	7.3.1. Introduction	191
	7.3.2. Tectonic framework of SE China and granite formation	192
	7.3.3. Tectonic model	196
	7.3.4. Multiple melting (remelting) and granite belts	198
	7.3.5. Summary	200
	7.4. Continental collision and granite formation: Tethys Belt	201
	7.4.1. Tectonic framework and granite distribution	
	of Tibet plateau	201
	7.4.2. Tectonic phases in relation to subduction and collision	202
	7.4.3. Magma layers and plate convergence	205
	7.5. Concluding statement	205
C	enlogical effects of crystallication of a amount	
S	eological effects of crystallisation of a crustal granite magma layer: E China	20=
	3.1. Fault-block basins	207
	8.1.1. Characteristics and distribution of Mesozoic basins	207
	8.1.2. Basin formation	207
		208

8.

8.1.3. Origin of red beds	212
8.1.4. Summary	217
8.2. Volcanism	217
9. Material and element cycling of the continental crust and summary	223
9.1. Rock cycling of continental material	223
9.2. Element cycling of the continental crust	225
9.3. Overview	
References	229
Appendix 1 Map of SE China showing provinces	249
Appendix 2 Results of experimental rock melting	251
Index	273