The long-anticipated revision of this well-liked textbook offers many new additions. In the twenty-five years since the original version of this book was published, much has happened in dynamical systems. Mandelbrot and Julia sets were barely ten years old when the first edition appeared, and most of the research involving these objects then centered around iterations of quadratic functions. This research has expanded to include all sorts of different types of functions, including higher-degree polynomials, rational maps, exponential and trigonometric functions, and many others. Several new sections in this edition are devoted to these topics.

The area of dynamical systems covered in A First Course in Chaotic Dynamical Systems: Theory and Experiment, Second Edition is quite accessible to students and also offers a wide variety of interesting open questions for students at the undergraduate level to pursue. The only prerequisite for students is a one-year calculus course (no differential equations required); students will easily be exposed to many interesting areas of current research. This course can also serve as a bridge between the low-level, often non-rigorous calculus courses, and the more demanding higher-level mathematics courses.

Features

- More extensive coverage of fractals, including objects like the Sierpinski carpet and others that appear as Julia sets in the later sections on complex dynamics, as well as an actual chaos "game."
- More detailed coverage of complex dynamical systems like the quadratic family and the exponential maps.
- New sections on other complex dynamical systems such as rational maps.
- A number of new and expanded computer experiments for students to perform.

About the Author

Robert L. Devaney is currently professor of mathematics at Boston University. He earned his PhD from the University of California at Berkeley under the direction of Stephen Smale. He taught at Northwestern University and Tufts University before coming to Boston University in 1980. His main area of research is dynamical systems, primarily complex analytic dynamics, but also more general ideas about chaotic dynamical systems. Lately, he has become intrigued with the incredibly rich topological aspects of dynamics, including such things as indecomposable continua, Sierpinski curves, and Cantor bouquets.

CRC Press titles are available as eBook editions in a range of digital formats

MATHEMATICS

vi	Co	ntents
	6.3 The Period-Doubling Bifurcation	69 73
7	The Quadratic Family	79
	7.1 The Case $c = -2$	79
	7.2 The Case $c < -2$	81
	7.3 The Cantor Middle-Thirds Set	85
8	Transition to Chaos	01
	8.1 The Orbit Diagram	91 91
	8.2 The Period-Doubling Route to Chaos	96
	8.3 Experiment: Windows in the Orbit Diagram	97
9	Symbolic Dynamics	105
	9.1 Itineraries	105 105
	9.2 The Sequence Space	
	9.3 The Shift Map	111
	9.4 Conjugacy	113
10	Chaos	
	10.1 Three Properties of a Chaotic System	121
	10.2 Other Chaotic Systems	121
	10.3 Manifestations of Chaos	
	10.4 Experiment: Feigenbaum's Constant	132 134
11	Sharkovsky's Theorem	
		139
	11.1 Period 3 Implies Chaos 11.2 Sharkovsky's Theorem 11.3 The Priod 2 With the Priod 2 With the Priod 3 Implies Chaos	139
	11.3 The Period-3 Window	142
	11.4 Subshifts of Finite Type	147
		151
12	Role of the Critical Point	159
	12.1 The Schwarzian Derivative	159
	12.2 Critical Points and Basins of Attraction	162
13	Newton's Method	169
	10.1 Dasic Properties	169
	13.2 Convergence and Nonconvergence	173
14	Fractals	181
	14.1 The Chaos Game	181
	14.2 The Cantor Set Revisited	183
	14.3 The Sierpinski Triangle	184
	14.4 The Sierpinski Carpet	186
	14.5 The Koch Snowflake	190
	14.6 Topological Dimension	192

Contents	vii		
14.7 Fractal Dimension	194 197 204 205		
15.1 Complex Arithmetic	211 211 215 218 220		
16.1 The Squaring Function	229 229 233 235 240 245 246		
17 The Mandelbrot Set 17.1 The Fundamental Dichotomy 17.2 The Mandelbrot Set 17.3 Complex Bifurcations 17.4 Experiment: Periods of the Bulbs 17.5 Experiment: Periods of the Other Bulbs 17.6 Experiment: How to Add 17.7 Experiment: Find the Julia Set 17.8 Experiment: Similarity of the Mandelbrot Set and Julia Sets	251 254 257 263 265 266 267 269		
18 Other Complex Dynamical Systems 18.1 Cubic Polynomials	281 283 291 298 300		
A Mathematical Preliminaries A.1 Functions	305 305 308 309 311		
Bibliography			
Index			

Pr	Preface to the Second Edition				
1	AV	isual and Historical Tour	1		
	1.1	Images from Dynamical Systems	1		
	1.2		4		
2	Exa	mples of Dynamical Systems	17		
	2.1	An Example from Finance	17		
	2.2	An Example from Ecology	18		
	2.3	Finding Roots and Solving Equations	20		
	2.4	Differential Equations	22		
3	Orb	its	25		
	3.1	Iteration	25		
	3.2	Orbits	26		
	3.3	Types of Orbits	27		
	3.4	Other Orbits	30		
	3.5	The Doubling Function	31		
	3.6	Experiment: The Computer May Lie	33		
4	Gra	phical Analysis	37		
	4.1	Graphical Analysis	37		
	4.2	Orbit Analysis	39		
	4.3	The Phase Portrait	41		
5	Fixe	ed and Periodic Points	45		
	5.1	A Fixed Point Theorem	45		
	5.2	Attraction and Repulsion	46		
	5.3	Calculus of Fixed Points	47		
	5.4	Why Is This True?	50		
	5.5	Periodic Points	55		
	5.6	Experiment: Rates of Convergence	57		
6	Bifu	rcations	61		
	6.1	Dynamics of the Quadratic Map	61		
	6.2	The Saddle-Node Bifurcation	65		