

An indispensable volume detailing the current and potential applications of atmospheric pressure plasma treatment by experts practicing in fields around the world

Polymers are used in a wide variety of industries to fabricate legions of products because of their many desirable traits. However, polymers in general (and polyolefins, in particular) are innately not very adhesionable because of the absence of polar or reactive groups on their surfaces and concomitant low surface energy. Surface treatment of polymers, however, is essential to impart reactive chemical groups on their surfaces to enhance their adhesion characteristic. Proper surface treatment can endow polymers with improved adhesion without affecting the bulk properties.

A plethora of techniques (ranging from wet to dry, simple to sophisticated, vacuum to non-vacuum) for polymer surface modification have been documented in the literature but the Atmospheric Pressure Plasma (APP) treatment has attracted much attention because it offers many advantages vis-a-vis other techniques, namely uniform treatment, continuous operation, no need for vacuum, simplicity, low cost, no environmental or disposal concern, and applicability to large area samples.

Although the emphasis in this book is on the utility of APP treatment for enhancement of polymer adhesion, APP is also applicable and effective to modulate many other surface properties of polymers: superhydrophilicity, superhydrophobicity, anti-fouling, anti-fogging, anti-icing, cell adhesion, biocompatibility, tribological behavior, etc.

The key features of *Atmospheric Pressure Plasma Treatment of Polymers*:

- Address design and functions of various types of reactors
- Bring out current and potential applications of APP treatment
- Represent the cumulative wisdom of many key academic and industry researchers actively engaged in this key and enabling technology

Readership

The information provided in this book should be of great interest and value to surface and chemical engineers as well as R&D, manufacturing, and quality control personnel in a host of industries and technological areas such as printing, textile, adhesive bonding, packaging, automotive, aerospace, composites, microfluidics, biomedical, paint, microelectronics, and nanotechnology.

Michael Thomas is the head of the Department of Atmospheric Pressure Processes at the Fraunhofer Institute for Surface Engineering and Thin Films (IST), Germany, and has more than 15 years' experience in surface technology. Trained as a chemist, his work is focused on fundamental and industrial projects of surface treatment and coatings in the area of plasma processes at atmospheric pressure, with specific interest in adhesion using dielectric barrier discharge and microplasma-based processes. He has published more than 30 technical papers and professional articles and holds 10 patents on the topic of atmospheric pressure plasma technology.

Kashmiri Lal Mittal was employed by the IBM Corporation from 1972 through 1993. Currently, he is teaching and consulting worldwide in the broad areas of adhesion as well as surface cleaning. He has received numerous awards and honors including the title of doctor *honoris causa* from Maria Curie-Skłodowska University, Lublin, Poland. He is the editor of more than 110 volumes dealing with adhesion measurement, adhesion of polymeric coatings, polymer surfaces, adhesive joints, adhesion promoters, thin films, polyimides, surface modification, surface cleaning, and surfactants.

Cover Design: Vestal Creative Services
Cover Image: Fraunhofer Institute for Surface Engineering and Thin Films (IST)

Also available
as an e-book

ISBN 978-1-118-59621-0

90000

9 781118 596210

Visit us at wiley.com

WILEY

SP
Scrivener

www.scrivenerpublishing.com

Preface	xiii
Acknowledgements	xvii

Part 1: Fundamental Aspects 1

1 Combinatorial Plasma-based Surface Modification of Polymers by Means of Plasma Printing with Gas-Carrying Plasma Stamps at Ambient Pressure	3
<i>Alena Hinze, Andrew Marchesseault, Stephanus Büttgenbach, Michael Thomas and Claus-Peter Klages</i>	
1.1 Introduction	4
1.2 Experimental	7
1.2.1 Porous Plasma Stamp Design and Fabrication	7
1.2.2 Plasma Printing	10
1.2.3 Chemical Derivatization of Functional Groups	12
1.2.4 FTIR and EDX Analyses	14
1.2.5 Electroless Metallization	16
1.2.6 Numerical Simulation of Concentration Distributions	17
1.3 Results and Discussion	18
1.4 Conclusions	23
Acknowledgements	23
References	24
2 Treatment of Polymer Surfaces with Surface Dielectric Barrier Discharge Plasmas	27
<i>Marcel Šimor and Yves Creyghton</i>	
2.1 Introduction	28
2.2 A General Overview of Surface Modification Results Obtained with Surface DBDs	32
2.2.1 Activation Processing	33
2.2.2 Post-Activation Processing	36

2.3	An Overview of Selected Results Obtained at TNO by the SBD	41
2.3.1	Hydrophilization of Polyester Fabric	41
2.3.2	Improvement of Adhesion of Poly(vinyl chloride) and Polyurethane Coatings to PET Fabric	46
2.3.3	Plasma-Assisted Grafting of Biocidal Non-leaching Coatings	50
2.3.4	Hydrophobization of Cotton Woven and Glass Fibre Nonwoven Fabrics	54
2.3.5	Corrosion-Protective Coatings of Thin Aluminium Layer	59
2.3.6	Plasma Polymerization of Nanocomposites	62
2.3.7	Plasma-Assisted Self-Assembly Technique	66
2.4	Conclusions	73
	References	74
3	Selective Surface Modification of Polymeric Materials by Atmospheric-Pressure Plasmas: Selective Substitution Reactions on Polymer Surfaces by Different Plasmas	83
	<i>Norihiro Inagaki</i>	
3.1	Introduction	84
3.2	Defluorination of Poly(tetrafluoroethylene) Surfaces	86
3.2.1	Hydrophilic Modification of Poly(tetrafluoroethylene) Surfaces by Low-Pressure Plasma	86
3.2.2	Hydrophilic Modification of Poly(tetrafluoroethylene) by Atmospheric-Pressure Plasma	91
3.3	Selective Modification of Polymeric Surfaces by Plasma	102
3.3.1	Selective Modification with Primary Amino Groups by Low-Pressure Plasma	104
3.3.2	Selective Modification Using Bromoform Plasma	111
3.3.3	Direct Amination Using Atmospheric-Pressure Plasma	115
3.4	Summary	120
	References	121

4	Permanence of Functional Groups at Polyolefin Surfaces Introduced by Dielectric Barrier Discharge Pretreatment in Presence of Aerosols	131
	<i>R. Mix, J. F. Friedrich and N. Inagaki</i>	
4.1	Introduction	131
4.2	Experimental	135
4.2.1	Materials	135
4.2.2	DBD Treatment System	135
4.2.3	Analytical Characterization	136
4.3	Results	137
4.3.1	Plasma-Induced Changes in Composition of Surface Layer	137
4.3.2	Stability of Surface Modification	143
4.3.3	Angle-Resolved XPS Measurements	148
4.4	Discussion	151
4.5	Summary	153
	Acknowledgements	153
	References	153
5	Achieving Nano-scale Surface Structure on Wool Fabric by Atmospheric Pressure Plasma Treatment	157
	<i>C.W. Kan, W.Y.I. Tsoi, C.W.M. Yuen, T.M. Choi and T.B. Tang</i>	
5.1	Introduction	158
5.2	Experimental	159
5.2.1	Materials and plasma treatment	159
5.2.2	Characterisation	160
5.3	Results and Discussion	160
5.3.1	Surface Topographical Modification	161
5.3.2	Surface Wetting Behaviour	162
5.3.3	Effects of Individual Operational Parameters	163
5.4	Conclusions	171
	Acknowledgements	171
	References	172
6	Deposition of Nanosilica Coatings on Plasma Activated Polyethylene Films	175
	<i>D. D. Pappas, A. A. Bujanda, J. A. Orlicki, J. D. Demaree, J. K. Hirvonen, R. E. Jensen and S. H. McKnight</i>	
6.1	Introduction	175
6.2	Experimental	177

6.3 Results and Discussion	179
6.3.1 Plasma Treatment and Surface Characterization of Polyethylene Films	181
6.3.2 Silica Synthesis and Coating of Plasma Treated Polyethylene Films	186
6.4 Conclusions	194
Acknowledgement	194
References	195
7 Atmospheric Plasma Treatment of Polymers for Biomedical Applications	199
<i>N. Gomathi, A. K. Chanda and S. Neogi</i>	
7.1 Introduction	199
7.2 Plasma for Materials Processing	200
7.3 Atmospheric Plasma Sources	202
7.3.1 Corona Discharges	202
7.3.2 Dielectric Barrier Discharges	203
7.3.3 Atmospheric Pressure Plasma Jets	204
7.3.4 Microwave (MW) Driven Plasmas	204
7.4 Effects of Plasma on Polymer Surface	206
7.4.1 Plasma Surface Modification	206
7.4.2 Plasma-Induced Grafting	207
7.4.3 Plasma Polymerization	207
7.5 Atmospheric Plasma in Biomedical Applications	208
7.5.1 Plasma Surface Modification of Biomaterials	208
7.5.2 Inactivation of Microorganisms	211
7.6 Conclusion	212
References	212
Part 2 Adhesion Enhancement	217
8 Atmospheric Pressure Plasma Polymerization Surface Treatments by Dielectric Barrier Discharge for Enhanced Polymer-Polymer and Metal-Polymer Adhesion	219
<i>Maryline Moreno-Couranjou, Nicolas D. Boscher, David Duguay, Rémy Maurau, Elodie Lecoq and Patrick Choquet</i>	
8.1 Introduction	220
8.2 Atmospheric Plasma Polymerization Processes	221

8.3	Atmospheric Plasma Surface Modification for Enhanced Adhesion	223
8.3.1	Tailoring the Surface Morphology by an Atmospheric Plasma Treatment	223
8.3.2	Deposition of Thin Organic Layers with Various Chemical Functionalities by an AP-DBD-CVD Process	229
8.4	Applications of Adhesion Improvement Using Atmospheric Pressure Plasma Treatments	240
8.4.1	Copper/Epoxy Adhesion in Electronics Industry	240
8.4.2	Aluminum to Polyethylene Adhesion for Food Packaging	242
8.4.3	Improving Adhesion between Vulcanized and Silicone Rubbers	243
8.5	Conclusion	246
	References	246
9	Adhesion Improvement by Nitrogen Functionalization of Polymers Using DBD-based Plasma Sources at Ambient Pressure	251
	<i>Michael Thomas, Marko Eichler, Kristina Lachmann, Jochen Borris, Alena Hinze and Claus-Peter Klages</i>	
9.1	Introduction	252
9.2	Amino Functionalization with Nitrogen-Containing Gases	253
9.2.1	Amino Functionalization Using a DBD	253
9.2.2	Amino Functionalization Using an AC Corona Discharge	259
9.3	Adhesion Promotion by Amino Functionalization with Nitrogen-Containing Gases	262
9.3.1	Adhesion Promotion by Amino Functionalization Using DBD	262
9.3.2	Adhesion Promotion by Amino Functionalization Using an AC Corona Discharge	268
9.4	Conclusion	270
	Acknowledgements	271
	References	271

10 Adhesion Improvement of Polypropylene through Aerosol Assisted Plasma Deposition at Atmospheric Pressure	275
<i>Marjorie Dubreuil, Erik Bongaers and Dirk Vangeneugden</i>	
10.1 Introduction	276
10.2 Experimental	278
10.2.1 Experimental Setup	278
10.2.2 Contact Angle (CA) Measurements	281
10.2.3 X-ray Photoelectron Spectroscopy (XPS)	281
10.2.4 Profilometry Analysis	282
10.2.5 Infrared Spectroscopy	283
10.2.6 Peel Tests	283
10.3 Results and Discussion	283
10.4 Conclusions	295
Acknowledgments	296
References	296
11 The Effect of Helium-Air, Helium-Water Vapor, Helium-Oxygen, and Helium-Nitrogen Atmospheric Pressure Plasmas on the Adhesion Strength of Polyethylene	299
<i>Victor Rodriguez-Santiago, Andres A. Bujanda, Kenneth E. Strawhecker and Daphne D. Pappas</i>	
11.1 Introduction	300
11.2 Experimental Approach	301
11.2.1 Plasma System and Materials	301
11.2.2 Water Contact Angle Measurements	302
11.2.3 AFM Images	302
11.2.4 XPS Measurements	303
11.2.5 Adhesion Testing	303
11.3 Results and Discussion	304
11.3.1 Water Contact Angles	304
11.3.2 XPS Analysis	304
11.3.3 AFM Results	308
11.3.4 T-Peel Tests	310
11.4 Conclusion	311
Acknowledgements	312
References	312

12 Atmospheric Plasma Surface Treatment of Styrene-Butadiene Rubber: Study of Adhesion and Ageing Effects	315
<i>Cátia A. Carreira, Ricardo M. Silva, Vera V. Pinto, Maria José Ferreira, Fernando Sousa, Fernando Silva and Carlos M. Pereira</i>	
12.1 Introduction	316
12.2 Experimental	319
12.2.1 Characterization	320
12.3 Results and Discussion	320
12.3.1 Plasma Treatment	320
12.3.2 Ageing Effects	323
12.4 Conclusions	325
Acknowledgements	325
References	326
13 Atmospheric Plasma Treatment in Extrusion Coating: Part 1 Surface Wetting and LDPE Adhesion to Paper	329
<i>Mikko Tuominen, J. Lavonen, H. Teisala, M. Stepien and J. Kuusipalo</i>	
13.1 Introduction	330
13.2 Experimental	332
13.3 Results and Discussion	336
13.3.1 Performance of Atmospheric Plasma Treatment Unit	336
13.3.2 Wetting of Paper Surface	340
13.3.3 Adhesion between LDPE Coating and Paper	346
13.4 Conclusions	350
Acknowledgements	351
References	351
14 Atmospheric Plasma Treatment in Extrusion Coating: Part 2 Surface Modification of LDPE and PP Coated Papers	355
<i>Mikko Tuominen, J. Lavonen, J. Lahti and J. Kuusipalo</i>	
14.1 Introduction	356
14.2 Experimental	359

14.3	Results and Discussion	363
14.3.1	Performance of Atmospheric Plasma Treatment Unit	363
14.3.2	Surface Wetting of LDPE and PP Coated Paper	365
14.3.3	Printability of LDPE and PP Coated Papers	370
14.3.4	Sealability of LDPE and PP Coated Papers	373
14.3.5	Friction, Gloss and Barrier Properties of LDPE and PP Coated Papers	376
14.4	Conclusions	377
	Acknowledgements	379
	References	379
15	Achieving Enhanced Fracture Toughness of Adhesively Bonded Cured Composite Joint Systems Using Atmospheric Pressure Plasma Treatments	383
	<i>Amsarani Ramamoorthy, Joseph Mohan, Greg Byrne, Neal Murphy, Alojz Ivankovic and Denis P. Dowling</i>	
15.1	Introduction	384
15.2	Materials and Methods	385
15.3	Characterisation Techniques	387
15.3.1	Water Contact Angle Measurements	387
15.3.2	X-ray Photoelectron Spectroscopy	387
15.3.3	Double Cantilever Beam Test	387
15.4	Results and Discussion	388
15.4.1	Surface Activation - Water Contact Angle (WCA) Measurements	388
15.4.2	Surface Chemistry - XPS Examination	390
15.4.3	Mechanical Testing - Fracture Toughness	392
15.5	Conclusions	393
	Acknowledgement	393
	References	393