
AMS/MAA | TEXTBOOKS

Combinatorics is mathematics of enumeration, existence, construction, and optimization questions concerning finite sets. This text focuses on the first three types of questions and covers basic counting and existence principles, distributions, generating functions, recurrence relations, Pólya theory, combinatorial designs, error correcting codes, partially ordered sets, and selected applications to graph theory including the enumeration of trees, the chromatic polynomial, and introductory Ramsey theory. The only prerequisites are single-variable calculus and familiarity with sets and basic proof techniques.

The text emphasizes the brands of thinking that are characteristic of combinatorics: bijective and combinatorial proofs, recursive analysis, and counting problem classification. It is flexible enough to be used for undergraduate courses in combinatorics, second courses in discrete mathematics, introductory graduate courses in applied mathematics programs, as well as for independent study or reading courses. What makes this text a guided tour are the approximately 350 reading questions spread throughout its eight chapters. These questions provide checkpoints for learning and prepare the reader for the end-of-section exercises of which there are over 470. Most sections conclude with Travel Notes that add color to the material of the section via anecdotes, open problems, suggestions for further reading, and biographical information about mathematicians involved in the discoveries.

Pr	eface	2. The teaching and symmetric department of the self-call.	vii	
Be	fore yo	ou go	xv	
1	Principles of Combinatorics			
	1.1	Typical counting questions and the product principle	2	
	1.2	Counting, overcounting, and the sum principle	15	
	1.3	Functions and the bijection principle	24	
	1.4	Relations and the equivalence principle	33	
	1.5	Existence and the pigeonhole principle	40	
2	Distr	ibutions and Combinatorial Proofs	49	
	2.1	Counting functions	49	
	2.2	Counting subsets and multisets	59	
	2.3	Counting set partitions	67	
	2.4	Counting integer partitions	75	
3	Algebraic Tools			
	3.1	Inclusion-exclusion	83	
	3.2	Mathematical induction	94	
	3.3	Using generating functions, part I	102	
	3.4	Using generating functions, part II	114	
	3.5	Techniques for solving recurrence relations	125	
	3.6	Solving linear recurrence relations	133	
4	Famous Number Families			
	4.1	Binomial and multinomial coefficients	141	
	4.2	Fibonacci and Lucas numbers	152	
	4.3	Stirling numbers	162	
	4.4	Integer partition numbers	175	
5	Counting Under Equivalence			
	5.1	Two examples	187	
	5.2	Permutation groups	189	
	5.3	Orbits and fixed point sets	200	
	5.4	Using the CFB theorem	206	

	5.5	Proving the CFB theorem	214		
	5.6	The cycle index and Pólya's theorem	217		
6	Combinatorics on Graphs				
	6.1	Basic graph theory	225		
	6.2	Counting trees	238		
	6.3	Coloring and the chromatic polynomial	249		
	6.4	Ramsey theory	261		
7	Desig	ns and Codes	271		
	7.1	Construction methods for designs	271		
	7.2	The incidence matrix and symmetric designs	281		
	7.3	Fisher's inequality and Steiner systems	290		
	7.4	Perfect binary codes	297		
	7.5	Codes from designs, designs from codes	308		
8	Partia	ally Ordered Sets	317		
	8.1	Poset examples and vocabulary	317		
	8.2	Isomorphism and Sperner's theorem	327		
	8.3	Dilworth's theorem	332		
	8.4	Dimension	337		
	8.5	Möbius inversion, part I	345		
	8.6	Möbius inversion, part II	355		
Bibliography					
Hi	Hints and Answers to Selected Exercises				
Li	List of Notation				
In	Index Index				
Al	About the Author				