

CONTENTS

Preface page xiii

1

What Problems Are We Trying to Solve?

1.1	The Air Pollution Tragedy	1
1.1.1	Health Risks from Air Pollution	1
1.1.2	Sources of Air Pollution	1
1.1.3	How Transitioning the Energy Infrastructure Can Address the Air Pollution Tragedy	2
1.2	Global Warming	2
1.2.1	The Natural Greenhouse Effect	3
1.2.2	Global Warming	3
1.2.3	Anthropogenic Greenhouse Gases	4
1.2.3.1	Carbon Dioxide, Methane, and Nitrous Oxide	4
1.2.3.2	Ozone	5
1.2.3.3	Halogens	5
1.2.3.4	Lifetimes and Global Warming Potentials	6
1.2.3.5	Carbon Dioxide Equivalent Emissions	8
1.2.3.6	Anthropogenic Water Vapor	9
1.2.2	Anthropogenic Absorbing Aerosol Particle Components	9
1.2.3	Anthropogenic Heat Emissions	10
1.2.4	The Urban Heat Island Effect	10
1.2.5	Impacts of Global Warming	10
1.3	Energy Insecurity	11
1.3.1	Energy Insecurity due to Diminishing Availability of Fossil Fuels and Uranium	11
1.3.2	Energy Insecurity due to Reliance on Centralized Power Plants and Oil Refineries	11
1.3.3	Energy Insecurity due to Reliance on Energy from Outside a Country	12
1.3.4	Energy Insecurity due to Fuels That Have Mining, Pollution, Waste, Meltdown, and/or Weapons Risk	13
1.4	Summary	13
	Further Reading	13
1.5	Problems and Exercises	14

2

Wind-Water-Solar (WWS) and Storage Solution

2.1	WWS Electricity-Generating Technologies	17
-----	---	----

2.1.1	Onshore and Offshore Wind	18
2.1.2	Wave	19
2.1.3	Geothermal	20
2.1.4	Hydroelectric	21
2.1.5	Tidal and Ocean Currents	25
2.1.6	Solar Photovoltaics	25
2.1.7	Concentrated Solar Power	27
2.2	WWS Transportation Technologies	28
2.2.1	Battery-Electric Vehicles	28
2.2.2	Hydrogen Fuel Cell Vehicles	29
2.2.2.1	Mechanisms of Hydrogen Production	31
2.2.2.2	Hydrogen Fuel Cells	32
2.2.2.3	Is Platinum a Limitation If Hydrogen Fuel Cells Are Adopted on a Large Scale?	34
2.2.3	Comparing Masses and Volumes among BE, HFC, and ICE Vehicles	34
2.3	WWS Building Heating and Cooling Technologies	38
2.3.1	District Heating and Cooling	38
2.3.2	Rooftop Solar Water Heaters	39
2.3.3	Heat Pumps	39
2.4	WWS High-Temperature Industrial Heat Technologies	42
2.4.1	Electric Arc Furnaces	42
2.4.2	Induction Furnaces	43
2.4.3	Electric Resistance Furnaces	44
2.4.4	Dielectric Heaters	44
2.4.5	Electron Beam Heaters	44
2.4.6	Steam Production from Heat Pumps and CSP	45
2.4.7	Steel Manufacturing	45
2.4.7.1	Reducing Carbon Emissions with Hydrogen Direct Reduction	46
2.4.7.2	Reducing Carbon Emissions with Molten Oxide Electrolysis	46
2.4.8	Concrete Manufacturing	47
2.4.8.1	A Type of Concrete That Emits No CO ₂	47
2.4.8.2	Sequestering CO ₂ in Concrete	47
2.4.8.3	Concrete Recycling	48
2.5	WWS Electric Substitutes for Fossil-Fuel Appliances and Machines	48
2.5.1	Electric Induction Cookers	48
2.5.2	Electric Fireplaces	48
2.5.3	Electric Leaf Blowers	49
2.5.4	Electric Lawnmowers	49
2.5.5	Other Appliances and Technologies	49

2.6	Reducing Energy Use and Increasing Energy Efficiency	50	3.2.1	Air Pollution Increases and Only Modest Lifecycle CO ₂ e Decreases due to Carbon Capture	91
2.7	WWS Electricity Storage Technologies	51	3.2.2	Total CO ₂ e Emissions of Energy Technologies	92
2.7.1	Concentrated Solar Power with Storage	51	3.2.2.1	Opportunity Cost Emissions	93
2.7.2	Hydroelectric Power Dam Storage	53	3.2.2.2	Anthropogenic Heat Emissions	94
2.7.3	Pumped Hydropower Storage	53	3.2.2.3	Anthropogenic Water Vapor Emissions	98
2.7.4	Stationary Batteries	54	3.2.2.4	Leaks of CO ₂ Sequestered Underground	101
2.7.5	Flywheels	58	3.2.2.5	Emissions from Covering Land or Clearing Vegetation	102
2.7.6	Compressed Air Energy Storage	58	3.2.2.6	Comparison of Coal and Natural Gas with Carbon Capture with Other Energy Technologies	102
2.7.7	Gravitational Storage with Solid Masses	59	3.2.3	Carbon Capture Projects	103
2.8	WWS Heat, Cold, and Hydrogen Storage Technologies	59	3.3	Why Nuclear Power Represents an Opportunity Cost	109
2.8.1	Heat and Cold Storage in Water Tanks	59	3.3.1	Risks Affecting the Ability of Nuclear Power to Address Global Warming and Air Pollution	111
2.8.2	District Heating Systems	60	3.3.1.1	Delays between Planning and Operation and due to Refurbishing Reactors	112
2.8.3	Underground Thermal Energy Storage	61	3.3.1.2	Air Pollution and Global Warming Relevant Emissions from Nuclear	114
2.8.3.1	Borehole Thermal Energy Storage	61	3.3.1.3	Nuclear Costs	114
2.8.3.2	Pit Thermal Energy Storage	64	3.3.2	Risks Affecting the Ability of Nuclear Power to Address Energy and Environmental Security	115
2.8.3.3	Aquifer Thermal Energy Storage	65	3.3.2.1	Weapons Proliferation Risk	115
2.8.4	Passive Heating and Cooling in Buildings	67	3.3.2.2	Meltdown Risk	117
2.8.4.1	Thermal Mass	67	3.3.2.3	Radioactive Waste Risks	118
2.8.4.2	Ventilated Façades	68	3.3.2.4	Uranium Mining Health Risks and Land Degradation	118
2.8.4.3	Window Blinds	68	3.4	Why Not Biomass for Electricity or Heat?	120
2.8.4.4	Window Film	69	3.4.1	Biomass without Carbon Capture	120
2.8.4.5	Night Ventilation	69	3.4.2	Biomass with Carbon Capture	121
2.8.5	Cold Storage in Ice	69	3.5	Why Not Liquid Biofuels for Transportation?	122
2.8.6	Hydrogen Storage	69	3.6	Why Not Synthetic Direct Air Carbon Capture and Storage?	124
2.8.7	Stanford University 100 Percent Renewable Electricity, Heat, and Cold Energy System	70	3.6.1	Discovery of Chemical Removal of CO ₂ from the Air	125
2.8.8	Electrified Home with Battery Storage and Heat Pumps	71	3.6.2	Reaction of CO ₂ with Alkali and Alkaline Earth Metal Oxides and Hydroxides	127
2.9	Controlling Non-Energy Air Pollution and Climate-Relevant Emissions	77	3.6.3	Reaction of CO ₂ with Organic-Inorganic Sorbents Consisting of Amines	128
2.9.1	Open Biomass Burning and Waste Burning	77	3.6.4	Opportunity Cost of SDACCS/U	128
2.9.2	Methane from Agriculture and Waste	78	3.7	Why Not Geoengineering?	131
2.9.3	Halogen Emissions	79	3.8	Summary	133
2.9.4	Nitrous Oxide and Ammonia Emissions from Fertilizers	79	3.8	Further Reading	133
2.10	Summary	80	3.9	Problems and Exercises	134
	Further Reading	80			
2.11	Problems and Exercises	81			
3					
Why Some Technologies Are Not Included					
3.1	Why Not Use Natural Gas as a Bridge Fuel?	85			
3.1.1	Climate Impacts of Natural Gas versus Other Fossil Fuels	86			
3.1.2	Air Pollution Impacts of Natural Gas versus Coal and Renewables	87			
3.1.3	Using Natural Gas for Peaking or Load Following	88			
3.1.4	Land Required for Natural Gas Infrastructure	89			
3.2	Why Not Use Natural Gas or Coal with Carbon Capture?	91			
4					
Electricity Basics					
4.1	Static Electricity, Lightning, and Wired Electricity	139			

4.1.1	Static Electricity	139	5.3.6	The Radiative Transfer Equation	184
4.1.2	Lightning	139	5.3.7	Phase Function and Asymmetry Parameter	185
4.1.3	Wired Electricity	140	5.3.8	Solutions to the Radiative Transfer Equation	187
4.2	Voltage and Kirchoff's Laws	142	5.4	Summary	189
4.3	Power and Resistance	143		Further Reading	190
4.4	Resistors in Series and Parallel	144	5.5	Problems and Exercises	190
4.5	Capacitors	145			
4.6	Electromagnetism	147	6		
4.7	AC Electricity and Inductors	148	Onshore and Offshore Wind Energy	193	
4.8	Single-Phase and Three-Phase AC Electricity and Generators	151	6.1	Brief History of Windmills and Wind Turbines	193
4.9	Real versus Reactive Power	152	6.2	Types of Wind Turbines	194
4.10	Transmission, Transformers, and the Battle of DC versus AC	153	6.3	Wind Turbine Parts	195
4.11	Summary	155	6.4	Wind Turbine Mechanics	196
	Further Reading	155	6.5	Wind Turbine Generators	198
4.12	Problems and Exercises	156	6.6	Power in the Wind and Wind Turbine Power Output	200
5			6.6.1	Wind Turbine Power Curve	200
Photovoltaics and Solar Radiation			6.6.2	Rayleigh and Weibull Frequency Distributions	201
5.1	Solar Photovoltaics	159	6.6.3	Power in the Wind	203
5.1.1	Conduction, Forbidden, and Filled Bands	159	6.6.3.1	Impacts of the Variation of Day and Night Wind Speed with Altitude on Power in the Wind	203
5.1.2	Maximum Possible PV Cell Efficiency	161	6.6.3.2	Impacts of the Variation in Air Density and Pressure with Altitude on Power in the Wind	206
5.1.3	Creating Electric Fields and Electricity in a PV Cell	161	6.6.4	Betz Limit	208
5.1.4	Types of and Materials in PV Cells	163	6.6.5	Wind Turbine Energy Output and Capacity Factor	209
5.1.5	PV Panels and Arrays	164	6.6.6	Factors Reducing Wind Turbine Gross Annual Energy Output	212
5.1.6	PV Panel Efficiencies	165	6.6.6.1	Transmission and Distribution Losses	212
5.1.7	Correction of PV Output for Cell Temperature and Other Processes	167	6.6.6.2	Downtime Losses	216
5.1.7.1	Correction for Cell Temperature	167	6.6.6.3	Curtailment Losses	216
5.1.7.2	Corrections for Additional Processes	168	6.6.6.4	Array Losses due to Competition among Wind Turbines for Available Kinetic Energy	216
5.1.8	Solar Zenith Angles and Fluxes and How They Vary with Tilted or Tracked Solar Panels	169	6.6.6.5	Overall Loss of Wind Energy Output	217
5.1.8.1	Solar Zenith Angle	170	6.7	Wind Turbine Footprint and Spacing Areas	218
5.1.8.2	Current Solar Flux to Horizontal Panels	172	6.7.1	Defining Wind Farm Spacing Area	218
5.1.8.3	Current Solar Flux to Tilted or Tracked Panels	173	6.7.2	Estimates of Wind Farm Spacing Areas	221
5.1.8.4	Optimal Tilt Angles	174	6.7.3	Application of Spacing Area	221
5.1.8.5	Impacts of Tilting and Tracking versus Horizontal Panels	175	6.8	Wind Physics and Resources	222
5.2	Solar Resources		6.8.1	Forces Acting on the Air	223
5.3	Calculating Direct and Diffuse Fluxes of Solar Radiation		6.8.1.1	Pressure Gradient Force	223
5.3.1	Radiation Spectra	177	6.8.1.2	Apparent Coriolis Force	223
5.3.2	Solar Radiation Reaching the Top of Earth's Atmosphere	177	6.8.1.3	Friction Force	224
5.3.3	Angles on a Sphere	180	6.8.1.4	Apparent Centrifugal Force	224
5.3.4	Radiance and Irradiance	182	6.8.2	How Winds Form	224
5.3.5	Optical Depth	182	6.8.2.1	Geostrophic Wind	224
		183	6.8.2.2	Surface Winds along Straight Isobars	225

6.8.2.3	Gradient Wind	225	7.5	Selecting a Mix of WWS Energy Generators to Meet Demand	259
6.8.2.4	Surface Winds along Curved Isobars	226	7.6	Estimating Avoided Energy, Air Pollution, and Climate Costs	272
6.8.3	Global Circulation of the Atmosphere	227	7.6.1	Avoided Energy Costs	272
6.8.3.1	Equatorial Low-Pressure Belt	227	7.6.2	Avoided Health Costs from Air Pollution	278
6.8.3.2	Winds Aloft in the Hadley Cells	229	7.6.3	Avoided Climate Change Damage Costs	294
6.8.3.3	Subtropical High-Pressure Belts	229	7.6.4	Summary of Avoided Energy, Health, and Climate Damage Costs	295
6.8.3.4	The Trade Winds	229	7.7	Summary	296
6.8.3.5	Subpolar Low-Pressure Belts	229	7.8	Further Reading	296
6.8.3.6	Westerly Winds Aloft at Midlatitudes	230	7.8	Problems and Exercises	297
6.8.3.7	Polar Easterlies	230			
6.8.4	Local Winds	230			
6.8.4.1	Sea/Land Breezes	230			
6.8.4.2	Gap Winds, Valley Breezes, and Mountain Breezes	232			
6.8.5	Global and Regional Wind Resources	232			
6.8.6	World Saturation Wind Power Potential	235			
6.9	Wind Turbine Impacts on Climate, Hurricanes, and Birds	238			
6.9.1	Wind Turbine Impacts on Climate	238			
6.9.2	Wind Turbine Impacts on Hurricanes	240			
6.9.3	Wind Turbine Impacts on Birds and Bats	244			
6.10	Summary	245			
	Further Reading	245			
6.11	Problems and Exercises	246			
7					
Steps in Developing 100 Percent All-Sector WWS and Storage Roadmaps		249	8	Matching Electricity, Heat, Cold, and Hydrogen Demand Continuously with 100 Percent WWS Supply, Storage, and Demand Response	299
7.1	Projecting End-Use Energy Demand	249	8.1	Methods of Meeting Energy Demand Continuously	299
7.2	Transitioning Future Energy to WWS Technologies	250	8.1.1	Interconnecting Geographically Dispersed Generators	304
7.3	Calculating End-Use Energy Reductions due to a Transition	252	8.1.2	Determining Annual Average Demands and Sizing WWS Generation to Meet Them	306
7.3.1	Efficiency of Electricity and Electrolytic Hydrogen over Combustion for Transportation	252	8.1.3	Sizing Additional Generation, Storage, and Demand Response	308
7.3.1.1	Efficiency of Battery-Electric Vehicles over Fossil-Fuel Vehicles	252	8.1.3.1	Estimating Heat, Cold, Hydrogen, and Electricity Loads	308
7.3.1.2	Efficiency of Hydrogen Fuel Cell Vehicles over Fossil-Fuel Vehicles	253	8.1.3.2	Estimating Loads Subject to Storage and Demand Response	311
7.3.2	Efficiency of Electricity over Combustion for High-Temperature Heat	257	8.1.3.3	Estimating Daily and Hourly Loads from Annual Loads	313
7.3.3	Reducing Energy Use by Moving Heat with Electric Heat Pumps Instead of Creating Heat	257	8.1.3.4	Sizing Storage and Additional Generation	315
7.3.4	Eliminating Energy to Mine, Transport, and Process Fossil Fuels, Biofuels, Bioenergy, and Uranium	258	8.1.4	Solutions to Instantaneous Over and Under Generation	317
7.3.5	Increasing Energy Efficiency and Reducing Energy Use beyond BAU	258	8.1.4.1	Solutions When Instantaneous WWS Electricity or Heat Supply Exceeds Instantaneous Load	317
7.3.6	Overall Reduction in End-Use Demand	258	8.1.4.2	Solutions When Instantaneous Load Exceeds Instantaneous WWS Electricity or Heat Supply	317
7.4	Performing a Resource Analysis	258	8.1.5	Measures Needed When Instantaneous Load Cannot Be Met with Instantaneous Supply or Storage	318
			8.1.5.1	Oversizing Wind, Water, and Sunlight Generation to Help Meet Demand	318
			8.1.5.2	Oversizing Storage to Help Meet Peaks in Demand	318
			8.1.5.3	Increasing Transmission Nameplate Capacity to Help Meet Demand	318
			8.1.5.4	Helping to Balance Demand with Vehicle-to-Grid	319

8.1.5.5	Using Weather Forecasts to Plan for and Reduce Backup Requirements	319	9.1.10	Effects of New York State Roadmap on New York Policies	356
8.1.6	Ancillary Services: Load Following, Regulation, Reserves, and Voltage Control	320	9.1.11	How the California Roadmap Led to Transitioning Towns and Cities	360
8.1.6.1	Load Following	320	9.1.12	<i>The Late Show with David Letterman</i>	361
8.1.6.2	Regulation	320	9.1.13	Impact of the California Roadmap on California Passing a 100 Percent Law	366
8.1.6.3	Frequency Regulation	321	9.1.14	50-State and 139-Country Roadmaps, New York Climate March, and Paris Climate Conference	368
8.1.6.4	Spinning, Supplemental, and Replacement Reserves and Voltage Control	321	9.1.15	Impacts of Roadmaps on U.S. Policies, Public Opinion, and International Business Commitments	369
8.2	Case Study of Meeting Demand with 100 Percent WWS	322	9.2	Timeline for a Transition	375
8.2.1	Previous Studies of Matching Demand with or near 100 Percent WWS	322	9.2.1	Timelines for Individual Technologies to Transition	375
8.2.2	Types of Models for Meeting Demand	324	9.2.2	How the Proposed Timeline May Impact Global CO ₂ Levels into the Future	377
8.2.2.1	Power Flow or Load Flow Models	324	9.2.3	How the Proposed Timeline May Impact Global Temperatures into the Future	377
8.2.2.2	Optimization Models	324	9.3	Obstacles to Overcome for a Transition	379
8.2.2.3	Trial-and-Error Simulation Models	325	9.3.1	Vested Interests in the Current Energy Infrastructure.	379
8.2.3	Matching Demand with WWS Supply, Storage, and Demand Response in 24 World Regions	326	9.3.2	Zoning Issues (NIMBYism)	380
8.3	Estimating Footprint and Spacing Areas of WWS Generators	337	9.3.3	Countries Engaged in Conflict	381
8.4	Estimating Jobs Created and Lost as Part of a Transition	338	9.3.4	Countries with Substantial Poverty	381
8.5	Summary	342	9.3.5	Transitioning Long-Distance Aircraft and Long-Distance Ships	382
8.6	Further Reading	343	9.3.6	Competition among Solutions	382
8.6	Problems and Exercises	343	9.4	Policy Mechanisms	382
9	Evolution of the 100 Percent Movement and Policies Needed for a WWS Solution	347	9.4.1	Policy Options for a Transition	382
9.1	Personal Journey to 100 Percent WWS	347	9.4.2	Policy Options by Sector	384
9.1.1	First Exposure to Severe Air Pollution	347	9.4.2.1	Energy Efficiency and Building Energy Measures	384
9.1.2	Hungry for Knowledge	348	9.4.2.2	Energy Supply Measures	384
9.1.3	Lessons for Life	349	9.4.2.3	Utility Planning and Incentive Structures	384
9.1.4	Building a Coupled Regional Air Pollution-Weather Prediction Computer Model	349	9.4.2.4	Transportation Measures	385
9.1.5	Expanding from the Regional to the Global Scale	350	9.4.2.5	Industrial-Sector Measures	385
9.1.6	Black Carbon, the Kyoto Protocol, and Wind versus Coal	351	9.5	Conclusion: Where Do We Go from Here?	385
9.1.7	Wind Energy Analysis and Comparing Impacts of Energy Technologies	352	9.5.1	Further Reading	386
9.1.8	100 Percent Wind-Water-Solar and the TED Debate	353	9.6	Problems and Exercises	387
9.1.9	The Solutions Project	354		Glossary of Acronyms	389
				Appendix	391
				References	395
				Index	408