
In this primer to the many-body theory of condensed matter systems, the authors introduce the subject to the nonspecialist in a broad, concise, and up-to-date manner. A wide range of topics are covered including the second quantization of operators, coherent states, quantum-mechanical Green's functions, linear response theory, and Feynman diagrammatic perturbation theory. Material is also incorporated from quantum optics, low-dimensional systems such as graphene, and localized excitations in systems with boundaries as in nanoscale materials. More than 100 problems are included at the end of chapters, which are used both to consolidate concepts and to introduce new material. This book is suitable as a teaching tool for graduate courses and is ideal for nonspecialist students and researchers working in physics, materials science, chemistry, or applied mathematics who want to use the tools of many-body theory.

MICHAEL G. COTTAM is a professor of physics in the Department of Physics and Astronomy at the University of Western Ontario. He has previously been the Chair of the Department of Physics and Astronomy, the director of Western University's Institute for Nanomaterials Science, and the associate dean in the Faculty of Science.

ZAHRA HAGHSHENASFARD holds PhDs from both the University of Isfahan in quantum optics and nonlinear processes, and from the University of Western Ontario in nonlinear processes for the magnetization dynamics in nanowires.

Cover image courtesy of Getty Images ANDRZEJ WOJCICKI/SCIENCE PHOTO LIBRARY

Cover designed by Hart McLeod Ltd

	Preface List of Abbreviations	<i>page</i> xi xiii
1	Introduction to Second Quantization	1
	1.1 Creation and Annihilation Operators	3
	1.2 Second Quantization for Bosons and Fermions	9
	1.3 Coherent States	12
	1.4 Model Hamiltonians for Interacting Boson or Fermion Particles	16
	1.5 Hamiltonian Diagonalization Methods	22
	Problems	31
2	Time Evolution and Equations of Motion	34
	2.1 Operator Methods in Different Quantum Pictures	35
	2.2 Forced Quantum Harmonic Oscillator	41
	2.3 Time Evolution of Coherent States	44
	2.4 Lattice Dynamics for Phonons	46
	2.5 The Interacting Boson Gas Revisited	51
	2.6 Exchange and Dipole-Exchange Spin Waves	52
	2.7 Electronic Bands of Graphene	54
	2.8 Density Fluctuations in an Electron Gas	57
	Problems	63
3	Formal Properties of Green's Functions	67
	3.1 Real-Time Green's Functions	68
	3.2 Time Correlation Functions	72
	3.3 Spectral Representations	74
	3.4 Real and Imaginary Parts of Green's Functions	77
	3.5 Imaginary-Time Green's Functions	82
	3.6 Methods of Evaluating Green's Functions	88
	Problems	91

vii

4	Exact Methods for Green's Function	94
	4.1 Noninteracting Gas of Bosons or Fermions	94
	4.2 Green's Functions for a Graphene Sheet	100
	4.3 Interaction of Light with Atoms	101
	4.4 Dipole-Exchange Ferromagnet	106
	4.5 Paramagnet with Crystal-Field Anisotropy	108
	Problems	112
5	Green's Functions Using Decoupling Methods	115
	5.1 Hartree–Fock Theory for an Interacting Fermion Ga	as 115
	5.2 Random Phase Approximation for Ferromagnets	120
	5.3 Random Phase Approximation for Antiferromagnet	s 126
	5.4 Electron Correlations and the Hubbard Model	130
	5.5 The Anderson Model for Localized States in Metals	s 135
	5.6 Microscopic Theory of Superconductivity	141
	Problems	146
6	Linear Response Theory and Green's Functions	148
	6.1 The Density Matrix	149
	6.2 Linear Response Theory	151
	6.3 Response Functions and Green's Functions	153
	6.4 Response Functions and Applications	156
	6.5 Phonons in an Infinite Elastic Medium	160
	6.6 Application to the Kubo Formalism	163
	6.7 Inelastic Light Scattering	169
	Problems	173
7	Green's Functions for Localized Excitations	176
	7.1 Acoustic Phonons at Surfaces	176
	7.2 Surface Spin Waves in Ferromagnets	179
	7.3 Edge Modes in Graphene Nanoribbons	184
	7.4 Photonic Bands in Multilayer Superlattices	190
	7.5 Impurity Modes in Ferromagnets	195
	Problems	199
8	Diagrammatic Perturbation Methods	202
	8.1 The Grand Partition Function	203
	8.2 Wick's Theorem	206
	8.3 The Unperturbed Imaginary-Time Green's Function	n 212
	8.4 Diagrammatic Representation	213
	8.5 The Interacting Imaginary-Time Green's Function	224
	Problems	230

Contents	ix
Applications of Diagrammatic Methods	233
9.1 Hartree–Fock Theory for Fermions	233
9.2 Density Fluctuations in an Electron Gas	237
9.3 Electron–Phonon Interactions	239
9.4 Boson Expansion Methods for Spin Waves	244
9.5 Scattering by Static Impurities	247
9.6 Diagrammatic Techniques for Spin Operators	256
Problems	263
References	265
Index	271