

Section I	
Skeletal Muscle Morphology	1
1. Human Body Composition and Muscle Mass	3
<i>Krzysztof Duda, Joanna Majerczak, Zenon Nieckarz, Steven B. Heymsfield and Jerzy A. Zoladz</i>	
1.1 Introduction	3
1.2 The Assessment of the System as a Whole	3
1.2.1 Body Mass, Basal Metabolic Rate, and Total Daily Energy Expenditure	4
1.2.2 Body Mass Index	5
1.2.3 Body Circumferences and Skinfolds Measurements	6
1.2.4 Body Surface Area	7
1.2.5 Body Volume and Body Density	8
1.3 Body Composition at Varied Levels of Complexity	9
1.3.1 Body Composition at the Atomic Level	9
1.3.2 Body Composition at the Molecular level	10
1.3.3 Body Composition at the Cellular Level	13
1.3.4 Body Composition at the Tissue–Organ Level	15
1.4 Basics of Body Compartmentalization	19
1.4.1 Two-Compartment Model of Body Composition	20
1.4.2 Three-Compartment Model of Body Composition	21
1.4.3 Four-Compartment Model of Body Composition	21
1.5 Conclusions	21

Acknowledgment	21
References	21
2. Functional Morphology of the Striated Muscle	27
<i>Wincenty Kilarski</i>	
2.1 Introduction	27
2.2 Muscle Fibers, Basic Morphological and Physiological Units	27
2.2.1 Microscopic Structure of Muscle Fibers	28
2.2.2 Sarcomeres, the Basic Elements of Myofibrils	30
2.3 Regulatory Proteins	32
2.3.1 Tropomyosin	32
2.3.2 Troponin	32
2.4 The Capillary Network of the Muscle Fibers	32
2.5 Sarcoplasmic Reticulum	35
2.6 Proteins of the Sarcoplasmic Reticulum Membranes	36
2.7 Strategic Distribution of Mitochondria	37
References	37
3. Mechanisms of Muscle Contraction and Relaxation	39
<i>Jonathan P. Davis, Svetlana B. Tikunova and Paul M.L. Janssen</i>	
3.1 Introduction	39
3.2 The Motor—Myosin	40
3.3 The Road—Actin	42
3.4 The Fuel—ATP	42
3.4.1 The Cross-Bridge Cycle	42
3.5 The Sensor	44
3.6 The Signal	46
3.6.1 Length—Tension Relationship	46

3.7 Types of Contractions	46
3.7.1 Force-Frequency Relationship and Recruitment	46
3.7.2 Force-Velocity Relationship and Power	47
3.7.3 Fatigue	47
3.8 Relaxation	47
3.9 Conclusion	48
References	48
4. Motor Units and Muscle Receptors	51
<i>Jan Celichowski and Piotr Krutki</i>	
4.1 Introduction	51
4.2 Motor Innervation of Skeletal Muscles	51
4.2.1 The Motor Unit	51
4.2.2 Motor Unit Territory and Muscle Compartments	53
4.2.3 Classification of Motor Units	53
4.2.4 Variability in the Contractile Properties of Motor Units	54
4.3 Motoneurons	57
4.3.1 Location, Morphology, and Innervation	57
4.3.2 Motoneuron Excitability—Diversity of Motoneurons of S, FR, and FF Motor Units	60
4.3.3 Rhythmic Firing of Motoneurons—Bistability and Adaptation	62
4.3.4 Synaptic Input to Motoneurons	64
4.4 Recruitment of Motor Units	65
4.4.1 Henneman's Size Principle	66
4.4.2 Summation of Motor Unit Forces	67
4.5 The Rate Coding of Muscle Force	67
4.5.1 The Force—Frequency Relationship	67
4.5.2 Force Modulation by the Pattern of Motoneuronal Firing	72
4.5.3 Decomposition of Tetanic Contractions	74
4.6 Motor Unit Action Potentials	74
4.7 Differences in Motor Unit Properties Between Muscles	76
4.8 Interspecies Differences in Motor Units	77
4.9 The Sex Differences in Motor Units	79
4.10 Plasticity of Motor Units	79
4.10.1 Plasticity of Motor Unit Contractile Properties	80
4.10.2 Plasticity of Motoneurons	81
4.11 Muscle Receptors	83
4.11.1 Muscle Spindles	83
4.11.2 Tendon Organs	85
4.12 Laboratory Methods of Experimental Research on Motor Units and Muscle Receptors	86

4.12.1 Electrophysiological Investigation of Functionally Isolated Motor Units	86
4.12.2 Intracellular Recording of the Electrophysiological Properties of Motoneurons	87
4.12.3 Studies on the Function of Muscle Receptors	87
4.13 Conclusions	87
References	87

Section II

Muscle Energetics and Its Performance

93

5. Muscle Energetics

95

Graham J. Kemp

5.1 Introduction	95
5.2 The Basic Metabolism and Physiology of Skeletal Muscle Energetics	95
5.2.1 ATP Turnover	95
5.2.2 Intracellular Acid-Base Balance	95
5.2.3 Metabolic Regulation	95
5.2.4 Mitochondrial Capacity	96
5.3 Noninvasive Access to Skeletal Muscle Metabolism	96
5.4 Three Ways Magnetic Resonance Spectroscopy (MRS) Can Measure Metabolic Flux	97
5.4.1 Magnetization Transfer Methods	97
5.4.2 ^{13}C MRS Measurement of TCA Cycle Flux	97
5.4.3 ^{31}P MRS Kinetic Methods	98
5.5 Interpreting ^{31}P MRS Data: Measurements in Muscle at Rest	100
5.6 Interpreting ^{31}P MRS Data: Resting Muscle Under Cuff Ischemia	101
5.7 Interpreting ^{31}P MRS Data: Exercise Responses	101
5.7.1 Initial Exercise: Responses in the First Few Seconds	102
5.7.2 Ischemic Exercise: Exercise Without a Blood Supply	102
5.7.3 "Oxidative" Exercise, Where Glycolytic ATP Synthesis Can Be Ignored	102
5.7.4 Recovery From Exercise: Studying Mitochondrial Function	103
5.7.5 Recovery From Exercise: Studying Proton Efflux	104
5.7.6 High Intensity Exercise: Glycolytic and Oxidative ATP Synthesis	105

5.8 Approaches to Measurement of O₂ Transport and Consumption In Vivo	106
5.8.1 Measuring Cellular PO ₂	106
5.8.2 Measuring Muscle O ₂ Content	106
5.8.3 Combining NIRS and ³¹ P MRS	106
Abbreviations and Symbols	107
Acknowledgments	107
References	107

6. Efficiency of Skeletal Muscle 111

Chris J. Barclay

6.1 Introduction	111
6.2 Muscle Energetics Overview	111
6.2.1 Biochemical Changes in Response to Contractile Activity	111
6.2.2 Time Courses of Initial and Recovery Reactions	112
6.3 Thermodynamics of Muscle Contraction	112
6.3.1 Energy Output From Contracting Muscle	113
6.3.2 Relationship Between Muscle Biochemistry and Enthalpy Output	113
6.4 Efficiency of Muscle	115
6.4.1 Efficiency of Cross-Bridge Work Generation	115
6.4.2 Overall Muscle Efficiency	120
6.4.3 Efficiency of Mitochondrial Energy Transfer	122
6.5 Efficiency of Exercise in Humans	122
6.5.1 Data From Isolated Human Muscle Fibers	122
6.5.2 Estimating Muscle Efficiency From Exercise Efficiency	123
6.6 Conclusion	124
References	125
Appendices	126
Appendix 6.1	126
Appendix 6.2	127

7. Muscle Function: Strength, Speed, and Fatigability 129

Roger M. Enoka and Jacques Duchateau

7.1 Introduction	129
7.2 Muscle Activation	129
7.2.1 Muscle Unit	130
7.2.2 Muscle Fiber Types	130
7.2.3 Contractile Properties	132
7.2.4 Motor Unit Activation	133
7.3 Muscle Force	135
7.3.1 Sarcomere	135
7.3.2 Muscle Fiber Length	136
7.3.3 Muscle Fiber Anatomy	137
7.3.4 Force Transmission to the Skeleton	138

7.4 Muscle Function	138
7.4.1 Strength and Power	139
7.4.2 Speed-Related Properties	145
7.4.3 Fatigability	148
7.5 Conclusions	153
References	153
 8. Critical Power: Possibly the Most Important Fatigue Threshold in Exercise Physiology	 159
<i>Jesse C. Craig, Anni Vanhatalo, Mark Burnley, Andrew M. Jones and David C. Poole</i>	
8.1 Introduction	159
8.2 Historical Bases for the Critical Power Concept	159
8.3 The Critical Power Concept: Mechanistic Bases	163
8.3.1 Inspiratory Hyperoxia	165
8.3.2 Inspiratory Hypoxia: Acute	166
8.3.3 Inspiratory Hypoxia: Chronic	166
8.3.4 Impact of Duty Cycle on Critical Power	167
8.3.5 Complete Blood Flow Occlusion	168
8.3.6 Vascular Control Above Critical Power/Critical Speed and Nitrate Supplementation	168
8.3.7 All-Out Maximal Exercise	168
8.3.8 Peripheral Versus Central Fatigue and Exhaustion	169
8.4 Application of the Critical Power Concept to All-Out Exercise (Whole Body, Limb, Muscle Group, Isolated Muscle)	169
8.5 Practical Applications of the Critical Power Concept: Athletics, Aged and Patient Populations and Laboratory Testing	171
8.5.1 Athletics	171
8.5.2 Aged and Patient Populations	173
8.5.3 Why Measure Critical Power and W' as a Guide for Assessing Exercise Tolerance?	173
8.6 Laboratory Testing	175
8.7 Challenges to the Critical Power Concept	175
8.8 Conclusions	176
References	177
 9. Energy Cost of Human Locomotion on Land and in Water	 183
<i>Pietro E. di Prampero and Cristian Osgnach</i>	
9.1 Introduction	183
9.2 Locomotion on Land	184
9.2.1 The Nonaerodynamic Energy Cost	184
9.2.2 The Air Resistance	184

9.3 Walking and Running	184
9.3.1 Terrain, Locomotion Pathologies, Body Mass, Age	188
9.3.2 Accelerated/Decelerated Running	191
9.4 Speed Skating	193
9.5 Cycling	193
9.5.1 Mechanical Work and Energy Cost	193
9.5.2 The Efficiency of Cycling	195
9.5.3 The Rolling Resistance	196
9.5.4 The Aerodynamic Resistance	196
9.5.5 Altitude and Performance	197
9.5.6 On Sloping Grounds	200
9.6 Cross-Country Skiing	202
9.7 Locomotion in Water	203
9.7.1 The Energetics of Swimming	204
9.7.2 The Biomechanics of Swimming: Hydrodynamic Drag and Efficiency	206
9.7.3 Assisted Locomotion in Water	208
9.8 Conclusion and Practical Considerations	211
Acknowledgments	211
References	211

Section III

Muscle Metabolism and Exercise Physiology

215

10. The Coupling of Internal and External Gas Exchange During Exercise	217
<i>T. Scott Bowen, Alan P. Benson and Harry B. Rossiter</i>	
10.1 Introduction	217
10.1.1 Introduction to Exercise Bioenergetics	217
10.1.2 Definitions	219
10.2 Gas Exchange During Exercise	219
10.2.1 Exercise Intensity Domains	219
10.2.2 Ramp-Incremental Exercise	220
10.2.3 Constant Power Exercise and $\dot{V}O_2$ Kinetics	226
10.3 Physiological Mechanisms Dissociating the Lung and Muscle Gas Exchange	230
10.3.1 Oxygen Stores	230
10.3.2 Transit Delay	231
10.3.3 Flow-Weighted Venous Admixture	231
10.4 Evidence That Pulmonary $\dot{V}O_2$ Kinetics Reflect Intramuscular Metabolism During Exercise	232
10.4.1 Evidence From Computer Simulation	232
10.4.2 Evidence From Direct Measurement	233
10.4.3 Kinetic Control of Muscle $\dot{V}O_2$	234

10.5 Slow Pulmonary $\dot{V}O_2$ Kinetics in Aging and Chronic Disease: What Do They Tell Us About Exercise Limitation?	240
10.5.1 Aging	240
10.5.2 Chronic Heart Failure	240
10.5.3 Chronic Obstructive Pulmonary Disease	241
10.5.4 Skeletal Muscle Myopathies	242
10.6 Conclusions	242
References	242

11. Carbohydrate Metabolism During Exercise **251**

*Kelly M. Hammond, Marc J. Fell,
Mark A. Harris and James P. Morton*

11.1 Introduction	251
11.2 Overview of Carbohydrate Storage	252
11.3 Regulation of Carbohydrate Metabolism	253
11.3.1 Effects of Exercise Intensity and Duration	254
11.3.2 Effects of Substrate Availability	256
11.3.3 Effects of Training Status	257
11.4 Carbohydrate and Exercise Performance	258
11.4.1 Muscle Glycogen and Carbohydrate Loading	258
11.4.2 Preexercise Carbohydrate Availability	259
11.4.3 Carbohydrate Feeding During exercise	259
11.5 Carbohydrate and Training Adaptation	260
11.5.1 Overview of Molecular Regulation of Training Adaptations	260
11.5.2 Fasted Training	261
11.5.3 Postexercise Carbohydrate Restriction	262
11.5.4 Twice-per-day Training Models	262
11.5.5 Sleep-Low/Train-Low Models	262
11.5.6 High-Fat Feeding	263
11.5.7 Muscle Glycogen Threshold	264
11.5.8 Practical Applications	266
11.6 Conclusions	266
References	267

12. Muscle Lipid Metabolism **271**

Adrian Chabowski and Jan Górska

12.1 Introduction	271
12.1.1 Trafficking of LCFA Across Sarcolemma	271

12.1.2 The Effect of Physical Exercise on the Transmembrane Transport of LCFA	273
12.1.3 Mechanisms of FA Transporters Translocation	273
12.1.4 The Involvement of FA Transporters in the Mitochondrial Metabolism of LCFA	274
12.2 Glycerolipids	274
12.2.1 Glycerophospholipids	274
12.2.2 Triacylglycerols	276
12.2.3 Triacylglycerol lipases	276
12.2.4 Perilipins	277
12.3 Sphingolipids	277
12.3.1 Metabolism of Sphingolipids	277
12.3.2 Ceramide	278
12.3.3 Sphingosine-1-Phosphate	278
12.3.4 Sphingosine-1-Phosphate and Skeletal Muscle Regeneration	278
12.3.5 Other Effects of Sphingosine-1-Phosphate in Skeletal Muscles	279
12.3.6 Effect of Exercise on Sphingolipid Metabolism	279
12.4 Skeletal Muscle Lipids and Insulin Sensitivity	279
12.4.1 Triacylglycerols	279
12.4.2 Diacylglycerols	280
12.4.3 Ceramides	280
12.4.4 Sphingosine-1-Phosphate	280
12.5 Conclusions	280
References	281

13. Muscle as an Endocrine Organ	285
<i>Grit E. Legård and Bente K. Pedersen</i>	
13.1 Introduction	285
13.2 History: Myokines	285
13.3 A Yin-Yang Concept Exists Between Myokines and Adipokines	287
13.4 Myokines	287
13.4.1 Characteristics of a Myokine	287
13.4.2 Myostatin	291
13.4.3 Brain-Derived Neurotrophic Factor	291
13.4.4 Interleukin-7	293
13.4.5 Interleukin-8	293
13.4.6 Interleukin-15	294
13.4.7 Leukemia Inhibitory Factor	295
13.4.8 Irisin	296
13.5 Other Myokines with Metabolic Functions	297
13.5.1 Myonectin	297
13.5.2 Follistatin-Like 1	297
13.5.3 Fibroblast Growth Factor 21	298
13.5.4 Insulin-Like 6	298
13.5.5 Interleukin-4	298

13.6 Myokines with Anticancer Effect	298
13.7 Myokine Screening	298
13.8 Conclusions	300
Acknowledgments	300
References	300

14. The Role of Reactive Oxygen and Nitrogen Species in Skeletal Muscle 309

Zsolt Radak and Erika Koltai

14.1 Introduction	309
14.2 Differentiation of Fiber Types and Biogenesis of Mitochondria	309
14.3 Muscle Contraction and Reactive Oxygen and Nitrogen Species	310
14.4 RONS-Associated Oxidative Damage and Repair	312
14.5 Conclusions	313
References	314

15. Exercise, Immunity, and Illness 317

Arwel Wyn Jones and Glen Davison

15.1 Introduction	317
15.2 Exercise and Upper Respiratory Illness	317
15.2.1 Beneficial Effects with Moderate Exercise	317
15.2.2 Effects With Strenuous Training/in Athletes	317
15.3 Etiology of Upper Respiratory Illness	319
15.4 Immune System and Exercise	321
15.4.1 Moderate Exercise	321
15.4.2 Strenuous or Intensive Exercise	322
15.4.3 Exercise Training and Immune Function	331
15.5 Conclusions	334
References	335

Section IV Body Adaptation to Exercise 345

16. The Evolution of Skeletal Muscle Plasticity in Response to Physical Activity and Inactivity 347

Kenneth M. Baldwin and Fadia Haddad

16.1 Introduction	347
16.2 Key Discoveries Between 1910 and 1950: The Origin of Motor Units and Intrinsic Contractile Properties of Skeletal Muscle	347
16.2.1 The Motor Unit	347

16.2.2	Fast- and Slow-Type Muscle: Connecting a Functional Link of the Muscle Fiber to Its Motor Neuron	347
16.2.3	The Contributions of Archibald Vivian Hill to Fundamental Muscle Contraction Processes	350
16.3	Key Discoveries Between 1950 and 1970: Building a Foundation in Muscle Plasticity via Histochemical and Biochemical Techniques	351
16.3.1	Muscle Histochemistry and the Biochemistry of Myosin	351
16.3.2	The Early Science of Muscle Plasticity: Adaptive Responses of Muscle Fibers to Simulated Physical Activity	351
16.3.3	Early Studies on Exercise-Induced Adaptations in Skeletal Muscle	352
16.4	Key Discoveries Between 1970 and 1980: Contributions of Exercise Biochemistry to Studying Muscle Adaptations to Physical Activity	353
16.4.1	Fiber-Type Characterization of Mammalian Skeletal Muscle: Linking Biochemistry to Muscle Function	353
16.4.2	Adaptive Responses of Motor Units to Endurance Exercise	353
16.4.3	Impact of Training on Skeletal Muscle Fiber Types During Acute Bouts of Exercise	354
16.4.4	Can Fast-Type Fibers Become Converted Into Slow-Type Fibers by Physical Activity Paradigms?	355
16.4.5	Polymorphism of Myofibril Proteins and Role of Myosin	356
16.5	Discoveries From 1980 to 2000: Myosin Isoform Gene Discovery, Analytical Technological Advancements, and Expansion of Activity Models to Overcome the Atrophy of Inactivity	356
16.5.1	Advancing Biotechnologies and Identification of the Myosin Heavy Chain Gene Family	356
16.5.2	New Approaches to Identify Myosin Heavy Chain Proteins and Fiber Typing at the Protein and Molecular Level	358
16.5.3	Functional Properties of the Myosin Heavy Chain Isoforms	358
16.5.4	New Activity/Inactivity Paradigms Involving Animal Models	359

16.5.5 Single-Fiber Myosin Heavy Chain Polymorphism: How Many Patterns and the Role of Loading Conditions	360
16.6 2000–Present: Mechanisms Regulating Protein Balance and Muscle Mass, Mitochondrial Biosynthesis, and Contractile Phenotype Switching	361
16.6.1 Mechanisms of Altered Protein Balance Affecting Muscle Mass	361
16.6.2 Are Satellite Cells Required for Skeletal Muscle Hypertrophy?	361
16.6.3 The Role of Activity in Reversing Atrophy Responses to Unloading Stimuli: Importance of Resistance Exercise	363
16.6.4 Mechanisms of Mitochondrial Biosynthesis Regulation Muscle Performance	364
16.6.5 Transcriptional Regulation of Contractile Phenotype Switching in Response to Altered Activity and Loading States	365
16.6.6 Epigenetics and Muscle Gene Regulation in Response to Unloading and to Exercise	367
16.6.7 Role of Noncoding Antisense RNA During Altered Loading States	368
16.6.8 Role of MicroRNA	369
16.6.9 Mechanisms of Mitochondrial Biogenesis and Degradation	369
16.7 Conclusions	370
References	371

17. Muscle Blood Flow and Vascularization in Response to Exercise and Training 379

Bruno Tesini Roseguini and M. Harold Laughlin

17.1 Introduction	379
17.2 Anatomy and Functional Organization of the Skeletal Muscle Vasculature	380
17.3 Local Control of Microvascular Perfusion During Exercise	381
17.4 Interaction Between Metabolic and Sympathetic Control of Muscle Blood Flow	381
17.5 Muscle Blood Flow Heterogeneity	382
17.6 Impact of Exercise Training on Skeletal Muscle Blood Flow	383
17.7 Effects of Exercise Training on Skeletal Muscle Arteriolar Density	385

17.8 Impact of Exercise Training on Skeletal Muscle Capillarization	385
17.9 Effects of Exercise Training on Skeletal Muscle Vascular Control	386
17.10 Conclusions	387
References	387
18. Metabolic Transitions and Muscle Metabolic Stability: Effects of Exercise Training	391
<i>Jerzy A. Zoladz, Zbigniew Szkutnik and Bruno Grassi</i>	
18.1 Introduction	391
18.2 The Oxygen Uptake–Power Output Relationship	393
18.3 Measurement, Modeling, and Analysis of Pulmonary $\dot{V}O_2$ On-Kinetics	396
18.3.1 Overall $\dot{V}O_2$ Kinetics	396
18.3.2 Three Phases of Pulmonary $\dot{V}O_2$ Responses	398
18.3.3 Modeling of the Pulmonary $\dot{V}O_2$ Responses	399
18.4 Pulmonary $\dot{V}O_2$ On-Kinetics	399
18.4.1 Primary Component of the Pulmonary $\dot{V}O_2$ On-Kinetics	399
18.4.2 The Slow Component of Pulmonary $\dot{V}O_2$ On-Kinetics	400
18.5 The Relationship Between Pulmonary and Muscle $\dot{V}O_2$ On-Kinetics	401
18.5.1 The Primary Phase of $\dot{V}O_2$ On-Kinetics	401
18.5.2 The Slow Component of $\dot{V}O_2$ On-Kinetics	401
18.6 Oxygen Deficit and Oxygen Debt	401
18.6.1 Oxygen Deficit	401
18.6.2 The Rate of Adjustment of the $\dot{V}O_2$ On-Kinetics and the Size of the O_2 Deficit: What Do They Tell Us?	402
18.6.3 Oxygen Debt or the Excess Postexercise Oxygen Consumption	403
18.6.4 A Small Versus Large Muscle O_2 Debt: What Does It Tell Us?	405
18.6.5 $\dot{V}O_2$ Off-Kinetics: Other Approaches	405
18.7 The Factors Determining $\dot{V}O_2$ On-Kinetics	406
18.7.1 The Primary Component of the $\dot{V}O_2$ On-Kinetics	406
18.7.2 The Slow Component of the $\dot{V}O_2$ On-Kinetics	406

18.7.3 General Mechanisms for the Slow Component of Muscle $\dot{V}O_2$ On-Kinetics	408
18.8 The Impact of Endurance Training on Muscle Metabolic Stability and Muscle and Pulmonary $\dot{V}O_2$ On-Kinetics	408
18.8.1 Endurance Training and Muscle Metabolic Stability	408
18.8.2 Endurance Training and the $\dot{V}O_2$ On-Kinetics	409
18.8.3 The Mechanisms Underlying the Training-Induced Acceleration of $\dot{V}O_2$ On-Kinetics	410
18.8.4 The Effect of Physical Training on the Slow Component of the Pulmonary $\dot{V}O_2$ On-Kinetics	413
18.9 Conclusions	415
Acknowledgment	415
References	415

19. Human Ageing: Impact on Muscle Force and Power 423

Hans Degens

19.1 Introduction	423
19.2 Muscle Ageing and Daily Life Activities	423
19.3 Loss of Muscle Power During Ageing	424
19.4 Force-Generating Capacity	424
19.4.1 Age-Related Loss of Muscle Mass	424
19.4.2 Decreased Volume Proportion of fast fibers	425
19.4.3 Muscle Architecture	425
19.4.4 Muscle Ultrastructure	425
19.4.5 Reductions in Single Fiber Specific Tension	425
19.4.6 Neural Control	425
19.5 Changes in Maximal Shortening Velocity	426
19.6 Muscle Wasting and Function: Causes and Mechanisms	426
19.6.1 Causes of Muscle Weakness in Old Age	427
19.6.2 Mechanisms of Muscle Weakness	428
19.7 Conclusions	429
References	429

20. The Role of Exercise on Fracture Reduction and Bone Strengthening	433
<i>Wolfgang Kemmler and Simon von Stengel</i>	
20.1 Introduction	433
20.2 Exercise Strategies and Optimum Protocols for Bone Strengthening	435
20.2.1 Step One: Determinants of Fractures and Fracture Prevention	435
20.2.2 Step Two: Individual Status of the Subject With Respect to Fracture Risk	437
20.2.3 Step Three: Defining the Most Relevant Primary Aims(s) of the Exercise Protocol	437
20.2.4 Step Four: Application of the Exercise Protocol	438
20.2.5 Step Five: Validation of Training Aims; Reappraisal	447
20.2.6 Step Six: Definition of Other Dedicated Training Aims	448
20.3 Conclusion	448
References	448

Section V

Heart Muscle and Exercise

21. Functional Morphology of the Cardiac Myocyte	457
<i>Nicholas J. Severs</i>	
21.1 Introduction	459
21.2 Morphology of the Cardiac Myocyte and its Contractile Machinery	459
21.3 The Lateral Plasma Membrane and Transverse Tubules	460
21.4 Sarcoplasmic Reticulum and its Couplings to the Plasma Membrane	461
21.5 Intercellular Junctions Linking Cardiomyocytes	461
21.6 Intermediate Filaments, Costameres, and the Plasma Membrane Skeleton	464
21.7 Variation in Morphology Among Different Cardiac Myocyte Types	465
21.8 Conclusions	465
References	466

22. Exercise and the Coronary Circulation

467

*Dirk J. Duncker, Robert J. Bache,
Daphne Merkus and M. Harold Laughlin*

22.1 Introduction	467
22.2 The Coronary Circulation in Acute Exercise	467
22.2.1 Myocardial O ₂ Demand	467
22.2.2 Myocardial O ₂ Supply	468
22.2.3 Determinants of Coronary Blood Flow	470
22.2.4 Transmural Distribution of Left Ventricular Myocardial Blood Flow	472
22.2.5 Coronary Blood Flow to the Right Ventricle	475
22.2.6 Control of Coronary Vascular Resistance	476
22.2.7 Epicardial Coronary Arteries	487
22.2.8 The Coronary Circulation in Acute Exercise: Summary and Conclusions	488
22.3 The Coronary Circulation in Exercise Training	489
22.3.1 Structural Vascular Adaptations in the Heart	489
22.3.2 Adaptations in Coronary Vascular Control	491
22.3.3 Exercise Training Increases Coronary Transport Capacity	492
22.3.4 Coronary Circulation in Exercise Training: Summary and Conclusions	492
Acknowledgments	492
References	493

23. Cardiac Energetics

505

*June-Chiew Han, Kenneth Tran,
Andrew J Taberner, Brian Chapman
and Denis S. Loiselle*

23.1 Introduction	505
23.2 Cardiac Thermodynamics	505
23.2.1 Defining "Efficiency"	506
23.2.2 Heat Production	506
23.2.3 Free Energy and Bound Energy	507
23.2.4 Thermodynamic Efficiency and Entropy Creation	507
23.2.5 Heat Production From Oxidative Phosphorylation	508

23.2.6 Total Cardiac Heat Production	508
23.2.7 Mechanical Efficiency	508
23.2.8 Cross-Bridge Efficiency	508
23.3 Experimental Techniques of Measuring Cardiac Energetics	509
23.3.1 In vivo Measurement of Cardiac Energetics	509
23.3.2 Ex Vivo Measurement of Cardiac Energetics	509
23.3.3 In Vitro Measurement of Cardiac Energetics	512
23.3.4 "Total" Versus "Mechanical" Versus "Cross-Bridge" Efficiency	517
23.3.5 Stress-length Area and Stress-Time Integral: Their Energetic Equivalence	518
23.4 Partitioning of Global Cardiac Energetics	519
23.4.1 Basal Metabolism	519
23.4.2 Activation Metabolism	521
23.4.3 Cross-Bridge Heat	523
23.5 Mathematical Modeling of Cardiac Mechano-Energetics During Rest and Exercise	525
23.5.1 The Cross-Bridge Cycle	525
23.5.2 Ca^{2+} Activation	525
23.5.3 Cross-Bridge Cycling	525
23.5.4 Metabolic Considerations	526
23.5.5 Model Details	526
23.5.6 Regulation of Energy Supply and Demand	527
23.5.7 In Silico Simulation of Exercise	527
23.6 Effect of Acute Exercise on Global Cardiac Energetics	530
23.6.1 Basal Metabolism	531
23.6.2 Activation Metabolism	531
23.6.3 Cross-Bridge Metabolism	532
23.6.4 Total Efficiency	532
23.6.5 Summary	532
23.7 Conclusions	532
Acknowledgments	533
References	533

24. Regulation of Heart Rate and Blood Pressure During Exercise in Humans 541

James P. Fisher and Niels H. Secher

24.1 Introduction	541
24.2 Static Exercise	541
24.2.1 Onset of exercise	542
24.2.2 Sustained Static Exercise	546

24.2.3	Central Command Versus the Exercise Pressor Reflex	547
24.2.4	Autonomic Control of Heart Rate and Blood Pressure	549
24.2.5	Arterial Baroreceptors	549
24.2.6	Standing	550
24.2.7	Breath Hold	551
24.3	Dynamic Exercise	551
24.3.1	Onset of Exercise	551
24.3.2	Sustained (Steady-State) Exercise	552
24.3.3	Arterial Baroreceptors	553
24.3.4	Central Command Versus the Exercise Pressor Reflex	553
24.3.5	Autonomic Control of Heart Rate and Blood Pressure	555
24.4	Conclusions	556
	References	556

25. Sympatho-Excitation in Heart Failure: Contribution of Skeletal Muscle Reflexes and the Protective Role of Exercise Training 561

Hanjun Wang, Lie Gao and Irving H. Zucker

25.1	Introduction	561
25.2	Skeletal Myopathy in Chronic Heart Failure: From Functional Maladaptation to Structure Damage	562
25.2.1	Exercise Intolerance in Chronic Heart Failure	562
25.2.2	Oxidative Stress Contributes to Skeletal Myopathy in Chronic Heart Failure	563
25.2.3	Skeletal Muscle Atrophy and the Ubiquitin Proteasome System	563
25.3	Exercise Training Ameliorates Skeletal Muscle Atrophy of Chronic Heart Failure via Antioxidant/Ubiquitin Proteasome System	564
25.4	Sympatho-Excitation and Blood Flow Regulation During Exercise	564
25.4.1	Neural Control Mechanisms During Exercise	564
25.5	Abnormalities of Exercise Pressor Reflex in Cardiovascular Diseases	566
25.5.1	The Exercise Pressor Reflex in Chronic Heart Failure	566
25.5.2	The Exercise Pressor Reflex in Hypertension	568

25.6 Effect of Exercise Training on the Exercise Pressor Reflex in Health and Disease	568
25.6.1 Effect of Exercise Training on the Exercise Pressor Reflex in Health	568
25.6.2 Effect of Exercise Training on the Exercise Pressor Reflex in Chronic Heart Failure and Hypertension	569
25.7 Mechanisms Underlying the Beneficial Effect of Exercise Training on the Exaggerated Exercise Pressor Reflex in Chronic Heart Failure	570
25.7.1 Exercise Training Reversal of Muscle Type Shift in Chronic Heart Failure	571

25.7.2 The Role of Purinergic Receptors on the Exercise Training Effects on Group III Afferents in Chronic Heart Failure	571
25.7.3 The TRPV1 Receptors Are Involved in the Mechanism by Which Exercise Training Prevents the Desensitization of Group IV Afferents in Heart Failure	571
25.7.4 Other Potential Mechanisms	572
25.8 Future Directions	574
25.9 Conclusions	574
References	574
	581