3D DATA ACQUISITION FOR BIOARCHAEOLOGY, FORENSIC ANTHROPOLOGY, AND ARCHAEOLOGY

3D Data Acquisition for Bioarchaeology, Forensic Anthropology, and Archaeology serves as a guide for students and researchers that are interested in the use of geometric morphometric analyses in forensic and bioarcheological contexts. Digitizing and imaging methods that allow for the collection of three-dimensional (3D) data have vastly expanded and improved analytical methods for exploring shape and morphological diversification. The 3D approach is becoming a significant tool kit in biological/forensic anthropology, and archaeology as the application of geometric morphometrics to the study of the human skeleton allows for indepth analysis of morphological variation in several dimensions simultaneously. Simply put, these approaches allow for examination of skeletal dimensions outside of the vertical and horizontal planes that are used in traditional studies of skeletal metrics.

The chapters provided in this book offer clear definitions and explanations of different types of 3D data, to include 3D digitizer, landmarks and semilandmarks, scan data derived from 3D scanners, CT, and digital mesh models created from scan data. Craniofacial data acquisition and data analysis is the main focus of this text, but a brief tutorial on data acquisition and analysis of lithic artifacts is also provided. We offer best practices of data acquisition methods for recording landmark and semilandmark data on human crania, to include fragile archaeological human remains. The reader's understanding of geometric morphometrics will be enriched by descriptions and tutorials on the technology used for virtual model processing protocols, alignment methods, data acquisition techniques, basic technological protocols, and variations in research design within different subfields of biological anthropology and archaeology.

Key Features

- Descriptions of commonly used types of 3D data and associated technology
- Introduction and tutorials on the protocols of image data collection and processing
- Best practices for collecting 3D data on fragile human remains
- Case study example of working with 3D mesh and coordinate data in R
- Application of 3DGM to stone artifacts

About the Editors

Noriko Seguchi, PhD, completed her PhD in biological anthropology at the University of Michigan, Ann Arbor. She has been working on modern human diversity and population history and structure using craniofacial morphometrics data and postcranial data. Currently, she has been engaged in research on the global health history of Asia, the issue of repatriation of Ainu human remains, and the issue of "race" and gender in the history of biological anthropology in Japan. She is currently an associate professor of biological anthropology at the Faculty of Social and Cultural Studies at Kyushu University, Japan; a faculty affiliate of Department of Anthropology at the University of Montana, Missoula, USA; and appointed as an Honorary Research Fellow and Academic committee at the International Research Center for Bioarchaeology, the School of Archaeology, Jilin University, Jilin, Changchun, China.

Beatrix Dudzik, PhD, completed her doctoral degree in biological anthropology at the University of Tennessee, Knoxville. Her research focuses on variation of the human skeleton and the examination of geometric morphometric and traditional craniometric data in Asian and Hispanic populations. She has published studies on craniometric variation in peer-reviewed journals, both in biological and forensic anthropological contexts. Her research has been funded by the National Science Foundation as well as the National Institute of Justice. She currently works as an associate professor of anatomy at Lincoln Memorial University.

ACADEMIC PRESS

An imprint of Elsevier elsevier.com/books-and-journals

Contributors

Cor	ntributors	ix
1.	Introduction Noriko Seguchi, Beatrix Dudzik, Mary-Margaret Murphy and Anna M. Prentiss	1
	Introduction Difficulty of utilization of 3D technology Advancements in three-dimensional technologies Benefits of 3D measurements Sharing databases Benefits of this volume: the contents of each chapter References	1 3 4 7 8 9 12
2.	Digital model sample—Scanning and processing protocol Mary-Margaret Murphy and Noriko Seguchi	17
	Introduction The virtual environment—introduction Terms and definitions Software and file formats Standard alignment and orientation Collection Collection—example Processing Processing example Conclusion Supplementary data References	17 17 18 23 24 28 32 33 37 44 44 44
3.	Three-dimensional investigations of fragile archaeological human remains Kengo Ohno and Yoshinori Kawakubo	47
	Introduction Poorly preserved archaeological human skeletal remains from archaeological sites in Japan	47 47

	Devices used in the process of 3D data collection of fragile human crania Process of mirror reversing of defective data acquired from broken crania Conclusion References	50 54 56 57
4.	Landmark and semilandmark data collection using digitizers and data processing Beatrix Dudzik	59
	Introduction	59
	Data collection procedures	60
	Data preprocessing	61
	Discrete landmark statistical analysis	64
	Conclusions	68
	References	68
5.	Landmark and semilandmark data collection using 3D virtual model and data processing Mary-Margaret Murphy	71
	Introduction	71
	Landmark-type considerations—example	72
	Landmark selection	73
	Collecting landmark coordinates	74
	Landmark data processing	75
	In practice—landmark coordinate collection	79
	Landmark example	87
	Data collection	89
	Landmark coordinate data	90
	Missing data	91
	Landmark coordinate data processing	92
	Treatment of missing data	96
	Conclusion	99
	References	99
6.	Validity assessment: validity testing of mixed data	
	by multiple devices, methods, and observers	103
	Noriko Seguchi, Mary-Margaret Murphy and Shiori Yonemoto	
	Introduction	103
	Validity of three-dimensional models for cranial landmark data under	105
	variable processing parameters	104

	Validity testing on landmark data	104
	Materials and methods	108
	Paired interlandmark distance	109
	Landmark point variation	109
	Results	111
	Conclusions: validity of paired interlandmark distance and landmark	
	point variation	116
	Validity testing on semilandmark data collection	118
	Materials and methods: data collection and preparation	119
	Results	123
	Discussion and conclusions	126
	References	129
7.	3D data analysis using R	131
	Stefan Schlager	
	Introduction	131
	Preliminaries and installation	132
	Data import/export	133
	Spatial alignment and Procrustes analysis	140
	Example analysis: assessing measurement error	143
	Semilandmarks	148
	Routines for manipulating triangular meshes	154
	References	158
8.	Considerations in the application of 3DGM to stone artifacts	
	with a focus on orientation error in bifaces	161
	Will Archer and Darya Presnyakova	
	Introduction and background	161
	Raw data capture	162
	Artifact orientation	163
	Placing landmarks	169
	Conclusion	171
	Acknowledgments	172
	References	172
9.	Conclusions	175
	Beatrix Dudzik, Noriko Seguchi and Anna M. Prentiss	
	Future directions	179
	References	179
1-		101
ind	ex	101