LECTURE NOTES ON PRINCIPLES OF PLASMA PROCESSING

FRANCIS F. CHEN AND JANE P. CHANG

Plasma processing of semiconductors is an interdisciplinary field requiring knowledge of both plasma physics and chemical engineering. The two authors are experts in each of these fields, and their collaboration results in the merging of these fields with a common terminology. Basic plasma concepts are introduced painlessly to those who have studied undergraduate electromagnetics but who have had no previous exposure to plasmas. Unnecessary detailed derivations are omitted; yet, the reader is led to understand in some depth those concepts, such as the structure of sheaths, that are important in the design and operation of plasma processing reactors. Physicists not accustomed to low-temperature plasmas are introduced to chemical kinetics, surface science, and molecular spectroscopy. The material has been condensed to suit a nine-week graduate course, but it is sufficient to bring the reader up to date on current problems such as copper interconnects, low-k and high-k dielectrics, and oxide damage. Students will appreciate the web-style layout with ample illustrations opposite the text and ample room for notes. The included CD contains a copy of the book which can be indexed using a Search function, and which can be enlarged on a monitor for a closer look at the diagrams in color. Sample homework and exam problems can also be found on the CD.

This short book is also ideal for new workers in the semiconductor industry who want to be brought up to speed with minimum effort. There is no need to wade through a thick, heavy textbook or monograph. This book contains new research results and discusses new concepts and problems that did not exist at the time previous books were published. The authors achieve both breadth and depth while maintaining conciseness and comprehensibility.

Plasma Physics

PART Al: INTRODUCTION TO PLASMA SCIENCE

I. What is a plasma? 1

II. Plasma fundamentals 3

- 1. Quasineutrality and Debye length
- 2. Plasma frequency and acoustic velocity
- 3. Larmor radius and cyclotron frequency
- 4. E × B drift
- 5. Sheaths and presheaths

PART A2: INTRODUCTION TO GAS DISCHARGES

III. Gas discharge fundamentals 11

- Collision cross section and mean free path
- 2. Ionization and excitation cross sections
- 3. Coulomb collisions; resistivity
- 4. Transition between neutral- and ion-dominated electron collisions
- 5. Mobility, diffusion, ambipolar diffusion
- 6. Magnetic field effects; magnetic buckets

Cross section data 21

PART A3: PLASMA SOURCES I

IV. Introduction to plasma sources 25

- 1. Desirable characteristics of plasma processing sources
- 2. Elements of a plasma source

PART A4: PLASMA SOURCES II

V. RIE discharges 31

- 1. Debye sheath
- 2. Child-Langmuir sheath
- 3. Applying a DC bias
- 4. Applying an RF bias
- 5. Displacement current
- 6. Ion dynamics in the sheath
- 7. Other effects in RIE reactors
- 8. Disadvantages of RIE reactors
- 9. Modified RIE devices

Plasma Chemistry

PART B1: OVERVIEW OF PLASMA PROCESSING IN MICROELECTRONICS FABRICATION

- I. Plasma processing 99
- II. Applications in Microelectronics 100

PART B2: KINETIC THEORY AND COLLISIONS

- I. Kinetic theory 103
- II. Practical gas kinetic models and macroscopic properties 109
 - 1. Maxwell-Boltzmann distribution (MBD)
 - 2. A simplified gas model (SGM)
 - 3. Energy content
 - 4. Collision rate between molecules
 - 5. Mean free path
 - 6. Flux of gas particles on a surface
 - 7. Gas pressure
 - 8. Transport properties
 - 9. Gas flow

III. Collision dynamics 119

- 1. Collision cross sections
- 2. Energy transfer
- 3. Inelastic collisions

PART B3: ATOMIC COLLISIONS AND SPECTRA

- I. Atomic energy levels 125
- II. Atomic collisions 126
 - 1. Excitation processes
 - 2. Relaxation and recombination processes

III. Elastic collisions 129

- 1. Coulomb collisions
- 2. Polarization scattering

IV. Inelastic collisions 130

- 1. Constraints on electronic transitions
- 2. Identification of atomic spectra
- 3. A simplified model

7	ECR sources 47	SPECTRA
	Inductively coupled plasmas (ICPs) 49	I. Molecular energy levels 137
	Overview of ICPs	Electronic energy level
		2. Vibrational energy level
	Normal skin depth	3. Rotational energy level
	Anomalous skin depth Ionization energy	II. Selection rule for optical emission of
5.	Transformer coupled plasmas (TCPs)	molecules 139
	Matching circuits	III. Electron collisions with molecules 140
7.	Electrostatic chucks (ESCs)	1. Frank-Condon principle
	Dina A.C. Driese, Covincia IV	2. Dissociation
	PART A6: PLASMA SOURCES IV	3. Dissociative ionization
III.	Helicon wave sources and HDPs 61	4. Dissociative recombination
1.	Dispersion relation	5. Dissociative electron attachment
	Wave patterns and antennas	6. Electron impact detachment
	Mode jumping	7. Vibrational and rotational excitation
	Modified skin depth	
	Trivelpiece-Gould modes	IV. Heavy particle collisions 142
	Examples of helicon measurements	V. Gas phase kinetics 143
7.	Commercial helicon sources	PART B5: PLASMA DIAGNOSTICS
X. I	Discharge equilibrium 69	I. Optical emission spectroscopy 151
	Particle balance	1. Optical emission
	Energy balance	2. Spectroscopy
	Electron temperature	3. Actinometry
	Ion temperature	4. Advantages/disadvantages
		5. Application: end-point detection
	PART A7: PLASMA DIAGNOSTICS	II. Laser induced fluorescence 161
L. Introduction 75		III. Laser interferometry 162
II. I	Remote diagnostics 75	
1.	Optical spectroscopy	IV. Full-wafer interferometry 163
	Microwave interferometry	V. Mass spectrometry 164
3.	Laser Induced Fluorescence (LIF)	Tage Annog sugar to a spar \
II	Langmuir probes 79	PART B6: PLASMA SURFACE KINETICS
	Construction and circuit	I. Plasma chemistry 167
	The electron characteristic	II. Surface reactions 167
	Electron saturation	
	Space potential	1. Spontaneous surface etching
	Ion saturation current 83	2. Spontaneous deposition
	Distribution functions 90	3. Ion sputtering kinetics
	RF compensation	4. Ion-enhanced chemical etching
	Double probes and hot probes	III. Loading 177
		IV. Selectivity 178
	ω	V. Detailed reaction modeling 179

PART B4: MOLECULAR COLLISIONS AND

PART A5: PLASMA SOURCES III

1. Magnetic probes MODELING 2. Energy analyzers Fundamentals of feature evolution in I. 3. RF current probe plasma etching 183 4. Plasma oscillation probe II. Predictive modeling III. Mechanisms of profile evolution 186 1. Ion bombardment directionality 2. Ion scattering within the feature 3. Deposition rate of passivants 4. Line-of-sight redeposition of products 5. Charging of surfaces in the features IV. Profile simulation 190 V. Plasma damage 1. Contamination 2. Particulates 3. Gate oxide Damage - photon 4. Gate oxide damage - electrical stress 5. Lattice damage 6. Post-etch corrosion **EPILOGUE: CURRENT PROBLEMS IN SEMICONDUCTOR PROCESSING** 199 I. Front-end challenges 199 1. High-k dielectrics 2. Metal gates

204

205

PART B7: FEATURE EVOLUTION AND

XIII. Other local diagnostics

II. Back-end challenges

3. Barrier materials

2. Resist trimming

1. E-beam

1. Copper metalllization

2. Interlayer dielectrics (ILDs)

III. Patterning nanometer features

IV. Deep reactive etch for MEMS

VI. Species control in plasma reactors

V. Plasma-induced damage

93