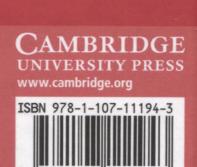
This book provides researchers and graduate students with a thorough introduction to the variational analysis of nonlinear problems described by nonlocal operators. The authors give a systematic treatment of the basic mathematical theory and constructive methods for these classes of nonlinear equations, plus their application to various processes arising in the applied sciences. The equations are examined from several viewpoints, with the calculus of variations as the unifying theme. Part I begins the book with some basic facts about fractional Sobolev spaces. Part II is dedicated to the analysis of fractional elliptic problems involving subcritical nonlinearities, via classical variational methods and other novel approaches. Finally, Part III contains a selection of recent results on critical fractional equations.

A careful balance is struck between rigorous mathematics and physical applications, allowing readers to see how these diverse topics relate to other important areas, including topology, functional analysis, mathematical physics, and potential theory.

Giovanni Molica Bisci is Assistant Professor of Mathematical Analysis at the Università "Mediterranea" di Reggio Calabria. He is the author of more than 90 research papers in nonlinear analysis.

Vicentiu D. Radulescu is Distinguished Adjunct Professor at King Abdulaziz University in Jeddah, Saudi Arabia and a professorial fellow at the "Simion Stoilow" Mathematics Institute of the Romanian Academy. He is the author of several books and more than 200 research papers in nonlinear analysis. Since 2014 he is a Highly Cited Researcher (Thomson Reuters).

Raffaella Servadei is Associate Professor of Mathematical Analysis at the Università degli Studi di Urbino "Carlo Bo." She has authored more than 40 research papers in nonlinear analysis.



For	reword	d		xiii
Pre	face		Central a face of the contractive the	xv
Pa	rt I	Fract	tional Sobolev spaces	
1			framework	3
10	1.1		er transform of tempered distributions	4
	1.2		onal Sobolev spaces	5
		1.2.1	Embedding properties	7
		1.2.2	The Sobolev space $H^s(\Omega)$	11
	1.3	The fr	actional Laplacian operator	11
		1.3.1	The constant $C(n, s)$: some properties	14
		1.3.2	The fractional Laplacian via Fourier transform	20
		1.3.3		22
	1.4	The fr	actional Sobolev space $\widetilde{H}_0^s(\Omega)$	22
		1.4.1	The extension problem and the space $X_0^s(\mathscr{C}_{\Omega})$	23
	1.5			26
		1.5.1	The space $X_0^s(\Omega)$	36
		1.5.2	Embedding properties of $X_0^s(\Omega)$	40
		1.5.3	The general case	41
2	A de	ensity re	esult for fractional Sobolev spaces	43
	2.1			44
	2.2	2.2 Some preliminary lemmas		46
		2.2.1	Properties of the support	46
		2.2.2	Acting by convolution	48
		2.2.3	Cutoff technique	50
		2.2.4	Effect of the translations	52

	2.3	Proof of Theorem 2.2 (and of Remark 2.3)	53
	2.4	Proof of the main result	55
	2.5	Note on the partition of unity	59
3	An	eigenvalue problem	63
	3.1	Eigenvalues and eigenfunctions of $-\mathcal{L}_K$	64
	3.2	A direct approach	65
		3.2.1 Proof of Proposition 3.1	68
	3.3	Another variational characterization of the eigenvalues	77
	3.4	A regularity result for the eigenfunctions	78
	3.5	Nodal set of the eigenfunctions of $(-\Delta)^s$: 1D case	82
4	We	ak and viscosity solutions	84
	4.1	Viscosity solutions	84
	4.2	Perron method and existence theory for viscosity solutions	86
	4.3	Regularity theory for weak solutions	88
		4.3.1 Maximum principle for weak solutions	90
		4.3.2 Proof of Theorem 4.2	90
	4.4	Proof of Theorem 4.1	93
	4.5	On the boundedness of weak solutions	95
		4.5.1 The linear case	95
		4.5.2 The nonlinear case	100
5	Spec	ctral fractional Laplacian problems	104
	5.1	Two different fractional operators	104
	5.2	A comparison between the eigenfunctions of A_s and $(-\Delta)^s$	106
		5.2.1 Poisson kernel of fractional type	107
		5.2.2 Optimal regularity for the eigenfunctions of $(-\Delta)^s$	108
	5.3	The spectrum of A_s and $(-\Delta)^s$	117
	5.4	One-dimensional analysis	117
	5.5	The first eigenvalue of A_s and that of $(-\Delta)^s$	124
Pa	rt II	Nonlocal subcritical problems	
6	Mou	ntain pass and linking results	131
	6.1	Hypotheses and statements	131
	6.2	Estimates on the nonlinearity and its primitive	131
	6.3	Proofs of the main theorems	135
		6.3.1 The case $\lambda < \lambda_1$: mountain pass–type solutions	136
		6.3.2 The case $\lambda \geq \lambda_1$: linking-type solutions	143
	6.4	Comments on the sign of the solutions	143
	6.5	A remark on the case $\lambda = 0$	150
			100

7	Exis	tence and localization of solutions	152
	7.1	Existence of one weak solution	153
		7.1.1 Notation	154
		7.1.2 Main results	155
		7.1.3 The fractional Laplacian setting	157
	7.2	A doubly parametric problem	161
		7.2.1 Some bifurcation theorems	162
		7.2.2 Proof of Theorem 7.10	164
8	Reso	onant fractional equations	169
	8.1	A saddle point result	169
	8.2	Eigenvalues for linear problems with weights	171
	8.3	Some technical lemmas	173
	8.4	The main result	177
		8.4.1 Geometry of the functional \mathcal{J}_a	178
		8.4.2 The Palais–Smale condition	180
		8.4.3 Proof of Theorem 8.1	184
9	A ps	eudoindex approach to nonlocal problems	186
	9.1	A multiplicity result	186
		9.1.1 Variational formulation	188
	9.2	A pseudoindex theorem	188
	9.3	The Palais–Smale condition	190
	9.4	Some preparatory lemmas	192
	9.5	k-h+1 distinct pairs of solutions	194
10	Mult	tiple solutions for parametric equations	195
	10.1	Two abstract critical points results	195
	10.2	Three weak solutions	197
	10.3	Two weak solutions	201
11	Infinitely many solutions		206
	11.1	The main results	207
	11.2	Abstract approach	209
		11.2.1 Some preliminary lemmas	211
	11.3	Some compactness conditions	213
		11.3.1 The Palais–Smale condition for $\mathcal{J}_{K,\lambda,h}$	213
		11.3.2 The Palais–Smale condition on M for $\mathcal{I}_{K,\lambda,h}$	216
	11.4	Existence of infinitely many solutions	220
		11.4.1 Proof of Theorem 11.2	220

12	Frac	tional Kirchhoff-type problems	224	
	12.1	Nondegenerate Kirchhoff equations	225	
		12.1.1 Mountain pass solution	225	
		12.1.2 Multiple solutions	227	
		12.1.3 Kirchhoff equations with bounded primitive	227	
	12.2	Degenerate Kirchhoff equations	231	
		12.2.1 Some multiplicity results	231	
		12.2.2 A Clark-type result for a Kirchhoff model	236	
13	On f	ractional Schrödinger equations	240	
	13.1	The main problem	241	
		13.1.1 Assumptions on the potential and the nonlinearity	241	
		13.1.2 The abstract framework	242	
	13.2	Multiple solutions	244	
	13.3	Nonexistence results	245	
	13.4	Perturbed Schrödinger equations	247	
Pa	rt III	Nonlocal critical problems		
14	The	Brezis-Nirenberg result for the fractional Laplacian	251	
	14.1	A critical fractional Laplace equation	252	
	14.2	Geometry of the functional $\mathcal{J}_{s,\lambda}$	255	
	14.3	Some crucial estimates	256	
		14.3.1 Some remarks on condition $S_{s,\lambda} < S_s$	267	
	14.4	End of the proof of Theorem 14.1	270	
15	Gene	ralization of the Brezis-Nirenberg result	276	
	15.1	Main results	276	
		15.1.1 Strategy for proving Theorem 15.1	277	
	15.2	A local Palais–Smale condition for the functional $\mathcal{J}_{s,\lambda}$	278	
	15.3	The geometry of the functional $\mathcal{J}_{s,\lambda}$	282	
	15.4	A nondegeneracy estimate	284	
	15.5	Proof of Theorem 15.1	289	
		15.5.1 A comment on the estimate of the critical level	290	
		15.5.2 End of the proof of Theorem 15.1	291	
16	The Brezis-Nirenberg result in low dimension			
	16.1	Existence of a nontrivial solution	293	
	16.2	Proof of Theorem 16.1	294	
		16.2.1 Estimates of the critical level of $\mathcal{J}_{s,\lambda}$	295	
		16.2.2 End of the proof of Theorem 16.1	298	

17	The	critical equation in the resonant case	299
	17.1 Main results		
	17.2	Estimate of the minimax critical level	301
18	The Brezis-Nirenberg result for a general nonlocal equation		309
	18.1 Assumptions and main results		309
	18.2	Some preliminary results	312
		18.2.1 Estimates on the nonlinearity	312
		18.2.2 Variational formulation of the problem	313
	18.3	The critical case with a lower-order perturbation	314
		18.3.1 End of the proof of Theorem 18.1	316
	18.4	12*-2	322
		18.4.1 End of the proof of Theorem 18.2	323
	18.5		323
		18.5.1 Some comments on the main theorems	324
		18.5.2 The Palais-Smale condition for the functional $\mathcal{J}_{K,\lambda,f}$	325
		18.5.3 The geometry of the functional $\mathcal{J}_{K,\lambda,f}$	331
		18.5.4 Estimates of the critical level of $\mathcal{J}_{K,\lambda,f}$	334
	18.6	The model case	335
19	Existence of multiple solutions		337 338
	19.1		
	19.2	Proof of Theorem 19.1	339
20	Non	local critical equations with concave-convex nonlinearities	344
	20.1	Main results	345
		20.1.1 Variational formulation of the problem	345
	20.2		346
		20.2.1 The Palais–Smale condition for $\mathcal{J}_{s,\lambda,q}$	350
		20.2.2 Proof of statement (d) of Theorem 20.1	359
	20.3	The critical and convex case $q > 1$	363
		20.3.1 The Palais–Smale condition for $\mathcal{J}_{s,\lambda,q}$	363
		20.3.2 Proof of Theorem 20.2	367
Bil	oliogra	aphy	371
Inc	lex		381