
Quantum Algorithms via Linear Algebra computer science/mathematics
A PRIMER j RICHARD J. LIPTON AND KENNETH W. REGAN

This introduction to quantum algorithms is concise but comprehensive, covering many key al­
gorithms. It is mathematically rigorous but requires minimal background and assumes no knowl­
edge of quantum theory or quantum mechanics. The book explains quantum computation in 
terms of elementary linear algebra; it assumes the reader will have some familiarity with vectors, 
matrices, and their basic properties, but offers a review of all the relevant material from linear alge­
bra. By emphasizing computation and algorithms rather than physics, this primer makes quantum 
algorithms accessible to students and researchers in computer science without the complications 
of quantum mechanical notation, physical concepts, and philosophical issues.

After explaining the development of quantum operations and computations based on linear 
algebra, the book presents the major quantum algorithms, from seminal algorithms by Deutsch, 
Jozsa, and Simon through Shors and Grovers algorithms to recent quantum walks. It covers quan­
tum gates, computational complexity, and some graph theory. Mathematical proofs are generally 
short and straightforward; quantum circuits and gates are used to illuminate linear algebra; and 
the discussion of complexity is anchored in computational problems rather than machine models.

Quantum Algorithms via Linear Algebra is suitable for classroom use or as a reference for 
computer scientists and mathematicians.

Richard J. Lipton is Professor and Frederick G. Storey Chair in Computing at Georgia Tech. 
Kenneth W. Regan is Associate Professor in the Department of Computer Science and Engineer­
ing at the University at Buffalo, State University of New York.

“A remarkably large part of quantum algorithms and quantum computing can be described with 
just the knowledge of multiplying matrices with complex number entries. Lipton and Regan have 
done a great job presenting all the major quantum algorithms from this easy and accessible point 
of view. Anyone interested in quantum computing would gain much from this presentation.”

—Noson S. Yanofsky, Professor, Department of Computer and Information Sciences, Brooklyn 
College; coauthor of Quantum Computing for Computer Scientists

“This book gives an excellent, rigorous introduction to quantum computing, using only the math­
ematical background normal for an undergraduate computer science major. Students often ask 
me how they can get started toward understanding this field, and I can now point them to this 
book. I will certainly recommend it to all the students in my undergraduate theory of computa­
tion class.”

—David Mix Barrington, School of Computer Science, University of Massachusetts Amherst

uQuantum Algorithms via Linear Algebra provides a great alternative introduction to the fascinat­
ing area of quantum computing. While traditional treatments are rooted in quantum mechanics, 
this quantum way of thinking could be a barrier for entry into this area. This book strips out the 

‘quantum-ness from some famous algorithms and keeps it about elementary linear algebra, thus 
opening up quantum computing to a larger audience.”

—Nisheeth Vishnoi, École Polytechnique Fédérale de Lausanne

"Quantum Algorithms via Linear Algebra is a marvelous and self-contained account of the algo­
rithms that ‘made quantum computing, presented in a clear and conversational style that is a 
delight to read. It succeeds in giving a mathematically precise, and complete, exposition that in­
vokes only elementary linear algebra. This style of presentation strips away unnecessary notation 
and abstraction and brings the beautiful ideas underlying these algorithms into a sharp focus.” 

—Chris Umans, Professor of Computer Science, Caltech
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