Contents

Cont Prefa	ributors	xv xix
Preia		AIA
1.	Cyanobacteria in Diverse Habitats	
	Lira A. Gaysina, Aniket Saraf, Prashant Singh	
	1. Introduction	1
	2. Cyanobacteria in Aquatic Habitats	2
	2.1 Marine Cyanobacteria	2
	2.2 Freshwater Cyanobacteria	5
	3. Symbiotic Cyanobacteria	7
	4. Terrestrial Cyanobacteria in Soil	9
	4.1 Arid Regions	9
	4.2 Temperate Climate	11
	5. Terrestrial Cyanobacteria in	
	Environmental Stress Conditions	12
	5.1 Volcanic Ash	12
	5.2 Salted Soils	12
	5.3 Anthropogenically Disturbed Areas	13
	6. Polar Cyanobacteria	14
	6.1 Soils and Biological Soil Crusts	15
	6.2 Lithic Environments	16
	6.3 Snow and Glacial Ice	16
	6.4 Cryoconite Ecosystems	16
	6.5 Ponds, Lakes, Rivers, and Streams	17
	7. Conclusion	17
	Acknowledgments	18
	References	18
	Further Reading	28
2.	Cyanobacteria in Nitrogen-Fixing	

Symbioses

Edder D. Bustos-Díaz, Francisco Barona-Gómez, Angélica Cibrián-Jaramillo

1.	Intr	oduction	29
2.	Cya	nobacterial Nitrogen Fixation, A	
	Biol	ogical Conversion Based on Nitrogenases	30
3.	Cya	nobacteria in Symbiosis, An Ancient	
	and	Evolving History of Interactions	31
	3.1	Obligate Cyanobacteria Symbionts	31
	3.2	Facultative Cyanobacteria Symbionts	37

4. Trends in Cyanobacterial M	Nitrogen
Fixation Symbioses	38
5. Conclusions	39
References	39
Further Reading	42
Cyanobacterial Taxono Morphometry to Mole	
N. Anand, N. Thajuddin, P.K.	Dadheech
1. Introduction	43
2. Taxonomic Studies	44
3. Floristic Studies	44
3.1 Blue-Green Algal Flora Fields	of Rice
3.2 Blue-Green Algae From	n Marine
Environments	46
3.3 Blue-Green Algal Flora	on the Rock
Surface of Monuments	
3.4 Thermal Cyanobacteria	a 46
4. Culture Studies, Numerica	
and Life-Histories	. 47
5. Chemotaxonomy	48
5.1 Fatty Acid Composition	n and Taxonomy 48
6. Molecular Tools and Taxon	nomy 48
6.1 DNA Fingerprinting	48
6.2 Phylogenetic Analysis	Using 16S rRNA
and Others	51
6.3 Assessment of Morpho	logical
Characteristics by Mole	ecular
Analysis	51
6.4 Designation of New Ge	enera and
Identification	52
6.5 Polyphasic Analyses	53
6.6 Barcoding	54
7. Concluding Remarks	54
Appendix	54
Classification of Cyanobac	
Cyanoprokaryotes	54
Acknowledgments	55
References	56
Further Reading	63

3.

ł.	Dormant Cells (Akinetes) of
	Filamentous Cyanobacteria
	Demonstrate a Great Variability
	in Morphology, Physiology, and
	Ecological Function

Assaf Sukenik, Jacqueline Rücker, Iris Maldener

1. Introduction	65
2. What Triggers Akinete Formation in	
Nostocales?	65
3. Akinete Differentiation and Maturation	66
3.1 Morphology, Structure, and Cellular	
Composition	66
3.2 Metabolism During Akinete	
Differentiation, Maturation, and	
Dormancy	69
4. Genes Involved in Akinete Differentiation	69
5. Akinete Germination	70
6. Ecological Role of Akinetes	71
7. Conclusions and Open Questions	73
Acknowledgments	74
References	74

5. Chlorophyll *a* Fluorescence in Cyanobacteria: Relation to Photosynthesis

Alexandrina Stirbet, Dušan Lazár, George C. Papageorgiou, Govindjee

1. Introduction

	1.1	Photosynthetic Apparatus and
		Oxygenic Photosynthesis in
		Cyanobacteria Compared to Plants
		and Algae
	1.2	Photosynthetic Regulatory Processes
		in Cyanobacteria
	1.3	The Importance of Chlorophyll a
		Fluorescence Measurements in the
		Study of the Photosynthetic Processes
2.	Pho	tosynthetic Systems and Antenna:
	Exci	tation Energy Transfer, Trapping, and
	Elec	tron Transport
	2.1	Phycobilisomes
	2.2	Photosystem II
	2.3	Photosystem I
3.	Ana	lysis of Chlorophyll a Fluorescence
		uction in Cyanobacteria:
	Mea	asurements With Continuous and
	Mo	dulated Light
	3.1	Chlorophyll a Fluorescence Induction
		and Measuring Techniques
	3.2	The Maximum Quantum Yield of

Photosystem II Photochemistry

3.3 The OJIP Transient Analysis	99
3.4 Chlorophyll a Fluorescence Induction	
Analysis Using the PAM-Saturation	
Pulse Method	100
4. Short-Term Regulatory Processes of	
Photosynthesis	102
4.1 State Transitions	102
4.2 Nonphotochemical Quenching of	
Chlorophyll a Fluorescence	108
5. Conclusions	110
Glossary	110
Acknowledgments	112
References	112
Further Reading	130
Photomorphogenesis in the	
Cyanobacterium Fremyella	
diplosiphon Improves	
Photosynthetic Efficiency	
inotosynthetic Enterency	
Vinod Kumar, Pankai K. Maurva, Soumila Mond	al.

6.

79

79

81

82

82

82

86

91

96

96

99

1. Introduction	131
2. PBS and Its Composition	132
2.1 Tailoring of PBS to Maintain Cost and	
Energy Benefits	132
3. Molecular Understanding of CCA	133
3.1 Components of Rca Pathway	136
3.2 Rca Pathway	137
3.3 Cgi Pathway	137
4. Tailoring of Cell and Filament Morphology	138
4.1 Mechanistic Insight of Morphological	
Alteration During CCA	138
4.2 RcaE-Dependent Photoregulation of	
Morphology and ROS Levels	139
5. Conclusions	140
Acknowledgments	140
References	140

Rajeshwar P. Sinha, Shailendra P. Singh

7. Mechanisms of Photoprotection in Cyanobacteria

Jainendra Pathak, Haseen Ahmed, Prashant R. Singh, Shailendra P. Singh, Donat-P. Häder, Rajeshwar P. Sinha

1. Introduction	145
2. Photodamage in Cyanobacteria	145
3. ROS Generated due to Photodamage in	
Cyanobacteria	147
3.1 Singlet Oxygen $(^{1}O_{2})$	147
3.2 Superoxide Radicals (O2 [•])	147
3.3 Hydrogen Peroxide	147
3.4 Hydroxyl Radicals	148

4. ROS-Induced Lipid Peroxidation,	
Protein Oxidation, and DNA Damage	
in Cyanobacteria	148
4.1 Lipid Peroxidation	148
4.2 Protein Oxidation	148
4.3 DNA Damage	149
5. Effect of UVR on Photosynthesis	149
6. Effect of UVR on Nitrogenase	149
7. Defense Mechanisms Adapted by	
Cyanobacteria Against High Light	
Intensity and UVR	150
7.1 First Line of Defense Mechanism	150
7.2 Second Line of Defense Mechanism	154
7.3 Third Line of Defense Mechanism	157
7.4 Fourth Line of Defense Mechanism	159
8. Conclusion and Future Prospects	161
Acknowledgments	161
Conflict of Interest	162
References	162
Further Reading	169

8. Nitrogenase and Hydrogenase: Enzymes for Nitrogen Fixation and Hydrogen Production in Cyanobacteria

Arun Kumar Mishra, Manish Singh Kaushik, D.N. Tiwari

1. Introduction	173
2. Heterocyst Differentiation and Nitroge	n
Fixation in Cyanobacteria	173
3. Nitrogen Assimilation and Control in	
Cyanobacteria	175
4. Nitrogenase: An Enzyme Linking N ₂	
Fixation and H ₂ Production in	
Cyanobacteria	176
4.1 Nitrogenase-Dependent H ₂	
Production in Heterocystous	
Cyanobacteria	178
5. Hydrogenases: Group of Enzymes	
Involved in Hydrogen Production and	
Regulation	179
5.1 Hydrogenases in Cyanobacteria	180
5.2 N_2 Fixation and H_2 Production in	
Nonheterocystous Cyanobacteria	183
5.3 Strategies for Manipulating	
Cyanobacterial Machinery to Improv	ve
H ₂ Production	183
6. Photobioreactors Used for	
Cyanobacterial Hydrogen Production	184
7. Conclusion	185
Acknowledgment	186
References	186
Further Reading	191

9. Influence of Circadian Clocks on Optimal Regime of Central C-N Metabolism of Cyanobacteria

Jan Cervený, Jakub Šalagovic, František Muzika, David Šafránek, Igor Schreiber

1. Introduction	193
2. Models of Cyanobacteria	194
2.1 Circadian Clock Model	194
2.2 Model of Carbon-Nitrogen	
Metabolism	195
2.3 Coupling of the Models	195
2.4 Coupled Model Analysis	197
2.5 Stoichiometric Network Analysis	201
3. Concluding Remarks	204
Acknowledgments	204
References	204
Further Reading	206

10. Phycobiliproteins and Their Commercial Significance

Vinod K. Kannaujiya, Deepak Kumar, Jainendra Pathak, Rajeshwar P. Sinha

1. Introduction	207
2. Commercial Production of PBPs	207
3. Purification	209
4. Utilization of PBPs	210
4.1 Natural Dye and Nutraceuticals	210
4.2 Pharmaceutical Agents	210
4.3 Fluorescent Agents	211
4.4 Cosmetics	211
4.5 Clinical Significance	212
5. Conclusions	213
Acknowledgment	213
References	213

11. Environmental and Technological Stresses and Their Management in Cyanobacteria

Liliana Cepoi

1. Introduction	217
2. The Influence of Heat Stress on	
Industrial Strain Arthrospira platensis	
CNMN-CB-11	218
3. Influence of Light Stress on Arthrospira	
platensis CNMN-CB-11	224
4. Influence of Salt Stress on Arthrospira	
platensis CNMN-CB-11 and Nostoc	
linckia CNMN-CB-03 in Laboratory	
Conditions	230

5. Influence of Copper and Zinc on	
Arthrospira platensis CNMN-CB-11	and
Nostoc linckia CNM-CB-03	236
6. Final Remarks and Conclusions	241
References	242

14

12. Iron Homeostasis in Cyanobacteria

Manish Singh Kaushik, Meenakshi Srivastava, Arun Kumar Mishra

1.	1. Introduction		245
2.	Iron	n is Essential for Cyanobacterial	
	Phy	siology and Survival	245
3.	Imp	lication of Iron Deprivation in	
	Cya	nobacteria	246
4.	The	Putative Systems of Iron Acquisition	
	in C	Cyanobacteria	247
	4.1	TonB-Dependent Transporters, TonB,	
		and ExbB/ExbD System	247
	4.2	Fur Protein: An Iron Sensor and	
		Global Regulator for Fine-Tuned Iron	
		Homeostasis in Cyanobacteria	250
5.	Cor	nclusion	256
	Ack	nowledgment	256
	Ref	erences	256
	Fur	ther Reading	260

13. Metals in Cyanobacteria: Physiological and Molecular Regulation

Sanjesh Tiwari, Parul Parihar, Anuradha Patel, Rachana Singh, Sheo Mohan Prasad

1.	I. Introduction		261
2.	Imp	act of Heavy Metal on Physiological	
	and	Biochemical Processes	262
	2.1	Impact of Heavy Metal Stress on	
		Growth and Photosynthetic Pigments	262
	2.2	Impact of Heavy Metal Stress on	
		Photosynthesis (Photosynthetic	
		Activity and PS II Photochemistry) and	
		Respiration	263
	2.3	Impact of Heavy Metal on Nitrogen	
		Metabolism	264
	2.4	Impact of Heavy Metal on Oxidative	
		Biomarkers and Antioxidants Status	265
3.	Mee	chanism of Stress Tolerance in	
	Cya	nobacterial System	265
	3.1	Exopolysaccharides—First Barrier for	
		Protection at Cellular Level	266
	3.2	Biosorption and Bioaccumulation	266
	3.3	Regulation at Molecular Level	267

4. Conclusion	268
References	271
Further Reading	276
. Ecophysiology of Cyanobacteria in the Polar Regions	n
Jana Kvíderová, Josef Elster, Jiří Komárek	
1. Introduction	277
2. Habitats	278
3. Extreme Conditions and Stress Factors in	1
the Polar Regions	278
4. General Mechanisms of Adaptation/	
Acclimation	281
4.1 Stress Avoidance	282
4.2 Stress Tolerance	284
5. Response to Crucial Stress Factors in the	:
Polar Regions	284
5.1 General Mechanisms	284
5.2 Low Temperature	285
5.3 Freeze/Melting Cycles	286
5.4 Desiccation	287
5.5 Salinity	288
5.6 Irradiance (PAR)	289
5.7 Ultraviolet Radiation	291
5.8 Multiple Stress	292
6. Concluding Remarks	292
Acknowledgments	293
References	293
Further Reading	302

15. Pesticides and Rice Agriculture

Balkrishna Tiwari, Surbhi Kharwar, D.N. Tiwari

1. Introduction	303
2. Pesticides and Cyanobacteria in Rice	
Agriculture	303
3. Effect of Pesticide on Cyanobacterial	
Growth and Physiology	304
3.1 Effect of Insecticides on	
Cyanobacteria	305
3.2 Impact of Herbicides on	
Cyanobacteria	308
4. Pesticide-Induced Oxidative Stress and	
Cyanobacterial Strategy of Tolerance	318
5. Use of Cyanobacteria in Bioremediation	
of Pesticides	319
5.1 Biodegradation of Insecticides by	
Cyanobacterium	319
5.2 Biodegradation of Herbicides by	
Cyanobacteria	320

320
321
321
325

16. Cyanobacteria: Applications in Biotechnology

Jay Kumar, Divya Singh, Madhu B. Tyagi, Ashok Kumar

1. Introduction	327
2. Genetic Engineering for Strain	
Improvement	328
3. Bioactive Compounds	329
3.1 Pharmaceutical Compounds	329
3.2 Toxins	332
3.3 Photoprotective Compounds	332
3.4 Bioplastics	334
3.5 Dyes and Colorants	335
4. Food, Feed, and Value-Added Products	335
5. Biofuel Production	336
6. Cyanobacteria as Source of Biofertilize	r 337
7. Role in Environmental Detoxification	339
8. Conclusion	340
Acknowledgments	340
References	340

17. Cyanobacterial

Exopolysaccharides: Composition, Biosynthesis, and Biotechnological Applications

Savita Singh, Chandra Kant, Ravindra Kumar Yadav, Yattapu Prasad Reddy, Gerard Abraham

1.	Intr	oduction	347
2.	Cya	nobacterial Exopolysaccharides (EPSs)	348
		synthesis and Genes Involved in	
		polysaccharide Production	349
4.	Ext	raction of Cyanobacterial	
	Exo	polysaccharides and Structural Analysis	350
5.		technological Applications of	
	Exo	polysaccharides	350
	5.1	Heavy Metal Removal and Wastewater	
		Treatment	350
	5.2	Role of Exopolysaccharides Under	
		Different Types of Stresses	351
	5.3	Food and Pharmaceutical Industry	352
	5.4	Bioflocculant	352
	5.5	Soil Conditioning and Biofilm Formation	353
6.	Cor	clusion and Future Prospects	353
	Ref	erences	353

Cyanobacterial Secretion Systems: Understanding Fundamental Mechanisms Toward Technological Applications

Cátia F. Gonçalves, Steeve Lima, Paula Tamagnini, Paulo Oliveira

1.	Intr	oduction	359
2.	Tran	nsporter-Mediated Secretion	361
	2.1	Protein Secretion	361
	2.2	Extracellular Polymeric Substances	
		Secretion	363
	2.3	Soluble Sugars and Organic Acids	
		Secretion	365
	2.4	Alcohols Export	367
	2.5	Fatty Acids Efflux	368
	2.6	Terpenoids Secretion	369
3.	Out	er Membrane Vesicle-Mediated	
	Sec	retion	370
	3.1	OMVs: Composition, Biogenesis,	
		and Functional Roles	370
	3.2	OMVs as Biotechnological Tools	372
4.	Fina	l Remarks	373
	Ack	nowledgments	374
	Refe	erences	374
	Furt	her Reading	381

19. Cyanobacterial Siderophores: Ecological and Biotechnological Significance

Sindhunath Chakraborty, Ekta Verma, Satya Shila Singh

1. Introduction	383
2. Biogeochemistry of Iron in Aqueous	
Solution	384
3. History of Siderophore Discovery	385
4. Chemistry and Function of Siderophores	385
5. Types of Cyanobacterial Siderophores	387
5.1 Hydroxamate	387
5.2 Catecholate	388
6. Detection of Siderophores	388
7. Biosynthesis of Siderophore	389
8. Factors Affecting Siderophore	
Production	390
8.1 Iron Concentration	390
8.2 Types of Nitrogen Sources	390
8.3 Effects of pH and Temperature	391
9. Siderophore-Mediated Iron Acquisition	391
10. Ecological Significance of	
Cyanobacterial Siderophores	392

11. Biomedical Significance of Siderophores 393

12. Conclusions	393
13. Future Prospects	393
Acknowledgments	393
References	393
Further Reading	397

20. Ecotoxicological Assessment of Antibiotics in Freshwater Using Cyanobacteria

Miguel González-Pleiter, Samuel Cirés, Jara Hurtado-Gallego, Francisco Leganés, Francisca Fernández-Piñas, David Velázquez

1. Introduction	399
2. Effects of Antibiotics in Cyanobacteria	400
3. Effective Concentrations of Antibiotics in	
Cyanobacteria	401
4. Oxidative Stress	406
5. Intracellular Free Calcium Anabaena sp.	
PCC 7120 (pBG2001a)	408
6. Environmental Effects of Antibiotics on	
Cyanobacterial Biofilms: "Omic"	
Approaches	409
7. Cyanobacterial Bioreporters Used in	
Antibiotics Studies	411
8. Concluding Remarks	413
References	414
Further Reading	417

21. Cyanobacterial Bioenergy and Biofuels Science and Technology: A Scientometric Overview

O. Konur*

1. Introduction	419
2. Methods and Materials	419
3. Scientometric Overview of the Research	
in Cyanobacterial Science and Technology	428
4. Scientometric Overview of the Citation	
Classics in Cyanobacterial Bioenergy and	
Biofuels Science and Technology	429
5. Citation Classics in Cyanobacterial	
Bioenergy and Biofuels Science and	
Technology	431
5.1 Citation Classics in Cyanobacterial	
Bioenergy and Biofuels Science and	
Technology in General	431
5.2 Citation Classics in Cyanobacterial	
Biomass Production	432
5.3 Citation Classics in Cyanobacterial	
Liquid Biofuels Science and Technology	433

5.4 Citation Classics in Cyanobacteri	al
Gaseous Biofuels Science	
and Technology	435
6. Conclusions	438
Acknowledgments	439
Conflict of Interest	439
References	439
Further Reading	442

22. Cyanobacterial Toxins

Joao Sarkis Yunes

1. Important Historical Aspects	443
2. Mechanisms of Eutrophication and Their	
Effects on Toxic Cyanobacterial Bloom	
Formation	445
2.1 Nonanthropogenic Contribution	445
2.2 Anthropogenic Contribution	446
2.3 The Effect of Eutrophication on	
Cyanobacterial and/or Algal	
Populations	447
2.4 Cyanobacterial Bloom Formation:	
Interactive Causes and Consequences	448
2.5 The Impact of Cyanotoxins on the	
Ecosystem Populations	449
2.6 The Cyanotoxins	453
Acknowledgments	455
References	455
Further Reading	458

23. Plant Growth-Promoting Abilities in Cyanobacteria

A.N. Rai, A.K. Singh, M.B. Syiem

1. Introduction	459
2. Promotion of Plant Growth Through	
Improvement of Soils	460
2.1 Reclamation of Usar Lands	460
2.2 Biofertilizers	460
3. Promotion of Plant-Growth Through	
Direct Transfer of Fixed Nitrogen	463
3.1 Cyanobacterial-Plant Symbioses	463
3.2 Other Cyanobacterial-Plant	
Associations	466
4. Promotion of Plant Growth Through	
Direct Transfer of Fixed Carbon	468
5. Promotion of Plant Growth Through	
Production of Growth Hormones,	
Vitamins, and Other Substances	468
6. Conclusion	470
References	471
Further Reading	476

Contents xiii

24. Importance of Bioinformatics in Genome Mining of Cyanobacteria for Production of Bioactive Compounds

Shashank Kumar Maurya, Niveshika, Rajnikant Mishra

1. Introduction	
2. Cyanobacteria as a Manufacturer of	
Bioactive Secondary Metabolites	
Dioactive secondary metals ontos	

477

477

478

479

- 3. Genome of Cyanobacteria
- 4. Genome Mining and Its Applications in Production of Bioactive Compounds of Cyanobacteria
- 4.1 Bioinformatics Portal for Secondary Metabolite 479 4.2 Mining of Genes and Proteins 503 5. Conclusions 505 Acknowledgment 505 Disclosure 505 References 505 Abbreviations 507 Index 515