Oxford Lecture Series in Mathematics and its Applications

Series Editors: John Ball and Dominic Welsh

Dynamics of Viscous Compressible Fluids Eduard Feireisl

This book develops the most recent ideas and concepts of the mathematical theory of viscous, compressible and heat conducting fluids. Two main goals are pursued: (i) global existence theory within the framework of variational (weak) solutions for the full system of the Navier-Stokes equations supplemented with large data; and (ii) optimal existence results for the barotropic flows with respect to the available *a priori* estimates.

The book is intended to be a compact and self-contained presentation of the most recent results of the mathematical theory of viscous compressible fluids. In order to place the text in better perspective, each chapter is concluded with a section devoted to historical notes including references to all important and new results. The material is by no means intended to be the last word on the subject but rather to indicate possible directions of future research. It is aimed at research mathematicians, theoretical physicists, engineers and graduate students.

Eduard Feireisl is a researcher at the Mathematical Institute of the Czech Academy of Sciences, Prague.

ALSO AVAILABLE FROM OXFORD UNIVERSITY PRESS

Elementary Fluid Dynamics
D. J. Acheson

Mathematical Topics in Fluid Dynamics: Volumes I and II P. L. Lions

Perfect Incompressible Fluids
J. Y. Chemin

Topics on Analysis in Metric Spaces Luigi Ambrosio and Paolo Tilli

9 780198 528388

www.oup.com

Ac	know	ledgement	xi
1	Physical background		
	1.1	Kinematics, description of motion	1
	1.2	Balance laws	3
	1.3	Constitutive equations	6
	1.4	Barotropic flows	13
	1.5	The Navier–Stokes system	15
	1.6	Bibliographical notes	17 ·
2	Mat	20	
	2.1	Function spaces	20
	2.2	Weak convergence	28
	2.3	Vector functions of one real variable	37
	2.4	Bibliographical notes	39
3	A priori estimates		40
	3.1	Estimates based on the maximum principle	42
	3.2	Total mass conservation	44
	3.3	Energy estimates	44
	3.4	Viscous dissipation	46
	3.5	A priori estimates—summary	51
	3.6	Bibliographical notes	52
4	Variational solutions		54
	4.1	The equation of continuity	54
	4.2	Momentum equation	66
	4.3	Thermal energy equation	74
	4.4	Bibliographical notes	83
5	Pre	86	
	5.1	Local pressure estimates	86
	5.2	Temperature estimates	94
	5.3	Bibliographical notes	99

6	Fun	ndamental ideas	101
	6.1	The effective viscous pressure	103
	6.2	A result of PL. Lions on weak continuity	103
	6.3	Weak continuity via compensated compactness	105
	6.4	The oscillations defect measure	111
	6.5	Renormalized solutions revisited	116
	6.6	Propagation of oscillations	118
	6.7	Weak stability revisited	127
	6.8	Limits of bounded sequences in L^1	137
	6.9	Bibliographical notes	140
7	Global existence		142
	7.1	Statement of the main result	143
	7.2	The approximation scheme	
	7.3	The Faedo–Galerkin approximations	
	7.4	Vanishing artificial viscosity	175
	7.5	Vanishing artificial pressure	187
	7.6	Bibliographical notes	198
		。	
Bibliography			201
Inc	lex		209