CONTENTS

Preface			ix		
Inti	roductio		X		
1.	Nach	Nash Equilibrium			
1.	1.1.	Nash equilibrium	1		
	1.2.	Cooperation and competition	3		
	1.3.	Examples of load balancing games	4		
	1.4.	Convex games	5		
			210		
2.	Cong	jestion Games	9		
	2.1.	Potential games	9		
	2.2.	Congestion games	14		
	2.3.	Player-specific congestion games	17		
	2.4.	Congestion games with strategy set constraint	21		
3.	Rout	ing Games	29		
٠.	3.1.	The KP-model of optimal routing with unsplittable traffic. The price of			
	1	anarchy anarchy	30		
	3.2.	Pure strategy equilibrium. Braess's paradox	32		
	3.3.	Completely mixed equilibrium in the problem with inhomogeneous			
		users and homogeneous channels	34		
	3.4.	The price of anarchy in the model with parallel channels and			
		unsplittable traffic	36		
	3.5.	The price of anarchy in the model with linear social cost and			
		unsplittable traffic for an arbitrary network	40		
	3.6.	The mixed price of anarchy in the model with linear social cost and			
		unsplittable traffic for an arbitrary network	45		
	3.7.	The price of anarchy in the model with maximal social cost and	40		
	20	unsplittable traffic for an arbitrary network The Wardran entimal routing model with splittable traffic	48		
	3.8. 3.9.	The Wardrop optimal routing model with splittable traffic The optimal routing model with parallel channels. The Pigou model.	51		
	3.9.	Braess's paradox	54		
	3.10.	Potential in the model with splittable traffic for an arbitrary network	55		
	3.11.	Social cost in the model with splittable traffic for convex latency	33		
	31.71.	functions	58		
	3.12.	The price of anarchy in the model with splittable traffic for linear	F 873		
		latency functions	59		
	3.13.	Potential in the Wardrop model with parallel channels for			
		player-specific linear latency functions	61		

	3.14.	The price of anarchy in an arbitrary network for player-specific linear	
		latency functions	64
	3.15.	The Wardrop model with parallel channels and incomplete information	66
	3.16.	Equilibria in the model with incomplete information	68
	3.17.	Potential and existence of Wardrop equilibrium in the model with	
		incomplete information	72
4.	Load	Balancing Game	77
	4.1.	A model of the load balancing game	78
	4.2.	The price of anarchy in the general case of N processors	79
	4.3.	The price of anarchy in the case of three processors	82
	4.4.	A numerical method to calculate the price of anarchy	88
	4.5.	Computing experiments	93
5.	Cove	r Game	95
	5.1.	A model of the cover game	96
	5.2.	The price of anarchy in the general case of N processors	97
	5.3.	The price of anarchy in the case of three processors	102
	5.4.	A numerical method to calculate the price of anarchy	107
	5.5.	Computing experiments	112
6.	Netw	orks and Graphs	117
	6.1.	Classical betweenness centrality for the nodes and edges of a graph	118
	6.2.	The PageRank method	120
	6.3.	Centrality measure for weighted graphs based on Kirchhoff's law	124
	6.4.	Centrality measure for weighted graphs as a solution of cooperative	
		game	135
		6.4.1. The Myerson value	136
		6.4.2. Characteristic function	137
		6.4.3. Allocation principle	138
		6.4.4. Generating function for the number of paths	139
		6.4.5. General case	141
		6.4.6. The Myerson value for a linear graph and star	143
		6.4.7. Transportation networks	145
		6.4.8. The Myerson value as centrality measure for weighted networks	147
7.	Socia	Networks	151
	7.1.	Graph construction for social network	151
	7.2.	Centrality measures for social networks	153
	7.3.	Modeling professional links by coauthored publications	155
	7.4.	Community detection in networks	158
	7.5.	Hedonic games	161
	7.6.	A search algorithm for Nash stable partition	167

8.	Gam	es on Transportation Networks	171
	8.1.	Transportation network and correspondence matrix	172
	8.2.	Traffic intensity calculation: an example	176
	8.3.	A model of public transport system	179
		8.3.1. The system with two carriers	179
		8.3.2. The system with K carriers	180
	8.4.	Optimal distribution and the Wardrop equilibrium principle	181
		8.4.1. Cooperative solution	183
		8.4.2. Wardrop equilibrium	187
		8.4.3. The price of anarchy	188
9.	Mod	els of Transportation Market	191
	9.1.	Allocation model over a graph	191
	9.2.	Pricing game over a graph	195
	9.3.	Allocation game over a graph	197
	9.4.	Modeling of air transportation market	200
		9.4.1. Modeling of passenger demand	201
		9.4.2. Logit model of passenger traffic distribution	203
10.	Gam	es With Request Flows in Service Systems	211
	10.1.	Arrival time choice in a one-server system with sequential requests	212
		10.1.1. Model of the system with two players	213
		10.1.2. Nash equilibrium in the problem with two players	215
		10.1.3. Model of the system with three and more players	221
	10.2.	Arrival time choice in a random-access two-server system with arbitrary	
		requests	226
		10.2.1. Two-server system. Noncooperative game	227
		10.2.2. Game with rational random-access scheme	229
		10.2.3. Deterministic number of players in the rational random-access	
		scheme game	234
		10.2.4. Poisson number of players in the rational random-access	
		scheme game	242
		10.2.5. Game with pure random-access scheme	249
		10.2.6. Deterministic number of players in the pure random-access	
		scheme game	254
		10.2.7. Poisson number of players in the pure random-access scheme	
		game	263
		10.2.8. Comparison of random-access schemes in terms of efficiency	269
11.	Clou	d Operator Games	273
	11.1.	Cloud computing market	274
	11.2.	Game-theoretical model	276
	11.3.	Two-player game	279

viii Contents

	11.4.	Symmetric case for <i>n</i> -player game	28
	11.5.	Numerical simulations	28
	11.6.	Two-sided telecommunication market	283
	11.7.	Generalized Hotelling specification for two operators	285
	11.8.	Two operators and company-dependent client preferences	289
	11.9.	Two operators and operator-dependent client preferences	292
	11.10.	M operators and company-dependent client preferences	295
References		303	
Index			20.
MICH			307