Contents

Preface	
---------	--

Chapter 1: Introduction

1.1	Multiple Regression/Correlation	
	as a Gen	eral Data-Analytic System 1
	1.1.1	Overview 1
	1.1.2	Testing Hypotheses Using Multiple
		Regression/Correlation: Some Examples 2
	1.1.3	Multiple Regression/Correlation in Prediction
		Models 3
1.2	A Comp	arison of Multiple Regression/Correlation
	and Ana	lysis of Variance Approaches 4
	1.2.1	Historical Background 4
	1.2.2	Hypothesis Testing and Effect Sizes 5
1.3		Regression/Correlation
	and the	Complexity of Behavioral Science 6
	1.3.1	Multiplicity of Influences 6
	1.3.2	Correlation Among Research Factors and Partialing 6
	1.3.3	Form of Information 7
	1.3.4	Shape of Relationship 8
	1.3.5	General and Conditional Relationships 9
1.4	Orientat	ion of the Book 10
	1.4.1	Nonmathematical 11
	1.4.2	
	1.4.3	
	1.4.4	Inference Orientation and Specification Error 13
1.5	-	ation, the Computer, and Numerical Results 14
	1.5.1	Computation 14

XXV

1

vii

viii CONTENTS

- 1.5.2 Numerical Results: Reporting and Rounding 14
- 1.5.3 Significance Tests, Confidence Intervals, and Appendix Tables 15
- 1.6 The Spectrum of Behavioral Science 16
- 1.7 Plan for the Book 16
 - 1.7.1 Content 16
 - 1.7.2 Structure: Numbering of Sections, Tables, and Equations 17
- 1.8 Summary 18

Chapter 2: Bivariate Correlation and Regression

2.1	Tabular and Graphic Representations of Relationships19	
2.2	The Index of Linear Correlation Between Two Variables:	
	The Pearson Product Moment Correlation Coefficient 23	
	2.2.1 Standard Scores: Making Units Comparable 23	
	2.2.2 The Product Moment Correlation as a Function of	
	Differences Between z Scores 26	
2.3	Alternative Formulas for the Product Moment	
	Correlation Coefficient 28	
	2.3.1 r as the Average Product of z Scores 28	
	2.3.2 Raw Score Formulas for r 29	
	2.3.3 Point Biserial r 29	
	2.3.4 Phi (ϕ) Coefficient 30	
	2.3.5 Rank Correlation 31	
2.4	Regression Coefficients: Estimating Y From X 32	
2.5	Regression Toward the Mean 36	
2.6	The Standard Error of Estimate and Measures of the Strength	
	of Association 37	
2.7	Summary of Definitions and Interpretations 41	
2.8	Statistical Inference With Regression and Correlation Coefficients	
	2.8.1 Assumptions Underlying Statistical Inference With B_{YX} ,	
	$B_0, \hat{Y}_i, \text{ and } r_{XY} \qquad 41$	
	2.8.2 Estimation With Confidence Intervals 42	
	2.8.3 Null Hypothesis Significance Tests (NHSTs) 47	
	2.8.4 Confidence Limits and Null Hypothesis	
	Significance Testing 50	
2.9	Precision and Power 50	
	2.9.1 Precision of Estimation 50	
	2.9.2 Power of Null Hypothesis Significance Tests 51	
2.10	Factors Affecting the Size of r 53	
	2.10.1 The Distributions of X and Y 53	
	2.10.2 The Reliability of the Variables 55	
	2.10.3 Restriction of Range 57	
	2.10.4 Part-Whole Correlations 59	
	2.10.5 Ratio or Index Variables 60	
	2.10.6 Curvilinear Relationships 62	
2.11	Summary 62	

19

Multiple Regression/Correlation With Two Chapter 3: or More Independent Variables 3.1 Introduction: Regression and Causal Models 64 What Is a Cause? 3.1.1 64 Diagrammatic Representation of Causal Models 3.1.2 65 **Regression With Two Independent Variables** 3.2 66 Measures of Association With Two Independent Variables 69 3.3 Multiple R and R^2 3.3.1 69 3.3.2 Semipartial Correlation Coefficients and Increments to R^2 72 Partial Correlation Coefficients 74 3.3.3 Patterns of Association Between Y and Two Independent 3.4 Variables 75 3.4.1 **Direct and Indirect Effects** 75 3.4.2 Partial Redundancy 76 3.4.3 Suppression in Regression Models 77 Spurious Effects and Entirely Indirect Effects 3.4.4 78 Multiple Regression/Correlation With k Independent 3.5 Variables 79 3.5.1 Introduction: Components of the Prediction 79 Equation Partial Regression Coefficients 3.5.2 80 R, R^2 , and Shrunken R^2 3.5.3 82 sr and sr^2 3.5.4 84 3.5.5 pr and pr^2 85 3.5.6 **Example of Interpretation of Partial Coefficients** 85 Statistical Inference With k Independent Variables 3.6 Standard Errors and Confidence Intervals for B 3.6.1 86 and β Confidence Intervals for R^2 3.6.2 88 Confidence Intervals for Differences Between 3.6.3 Independent R^2 s 88 3.6.4 Statistical Tests on Multiple and Partial Coefficients 88 3.7 Statistical Precision and Power Analysis 90 Introduction: Research Goals and the Null 3.7.1 Hypothesis 90 The Precision and Power of R^2 3.7.2 91 3.7.3 Precision and Power Analysis for Partial Coefficients 93 3.8 Using Multiple Regression Equations in Prediction 95 Prediction of Y for a New Observation 3.8.1 95 Correlation of Individual Variables With Predicted 3.8.2 Values 96 3.8.3 **Cross-Validation and Unit Weighting** 97 Multicollinearity 3.8.4 98

3.9 Summary 99

Chapter 4: Data Visualization, Exploration, and Assumption Checking: Diagnosing and Solving Regression Problems I

Introduc	tion 101
Some Us	seful Graphical Displays of the Original Data 102
4.2.1	Univariate Displays 103
4.2.2	Bivariate Displays 110
4.2.3	Correlation and Scatterplot Matrices 115
Assumption	tions and Ordinary Least Squares Regression 117
4.3.1	Assumptions Underlying Multiple Linear
	Regression 117
4.3.2	Ordinary Least Squares Estimation 124
Detectin	g Violations of Assumptions 125
4.4.1	Form of the Relationship 125
4.4.2	Omitted Independent Variables 127
4.4.3	Measurement Error 129
4.4.4	Homoscedasticity of Residuals 130
4.4.5	Nonindependence of Residuals 134
4.4.6	Normality of Residuals 137
Remedie	es: Alternative Approaches When Problems Are Detected 141
4.5.1	Form of the Relationship 141
4.5.2	Inclusion of All Relevant Independent Variables 143
4.5.3	Measurement Error in the Independent Variables 144
4.5.4	Nonconstant Variance 145
	Some Us 4.2.1 4.2.2 4.2.3 Assumpt 4.3.1 4.3.2 Detectin 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 4.4.4 4.4.5 4.4.6 Remedie 4.5.1 4.5.2 4.5.3

- 4.5.5 Nonindependence of Residuals 147
- 4.6 Summary 150

5.1

Chapter 5: Data-Analytic Strategies Using Multiple Regression/Correlation

	5.1.1	Net Contribution to Prediction 152
	5.1.2	Indices of Differential Validity 152
	5.1.3	Comparisons of Predictive Utility 152
	5.1.4	Attribution of a Fraction of the XY Relationship to a
		Third Variable 153
	5.1.5	Which of Two Variables Accounts for More of the XY
		Relationship? 153
	5.1.6	Are the Various Squared Correlations in One Population
		Different From Those in Another Given the Same
		Variables? 154
5.2	Research	Questions Answered by B Or β 154
	5.2.1	Regression Coefficients as Reflections of Causal
		Effects 154
	500	

Research Ouestions Answered by Correlations and Their Squares

- 5.2.2 Alternative Approaches to Making B_{YX} Substantively Meaningful 154
- 5.2.3 Are the Effects of a Set of Independent Variables on Two Different Outcomes in a Sample Different? 157

151

151

	5.2.4	What Are the Reciprocal Effects of Two Variables on One
		Another? 157
5.3	Hierard	chical Analysis Variables in Multiple Regression/
0.0	Correla	
	5.3.1	Causal Priority and the Removal of Confounding
	0.011	Variables 158
	5.3.2	Research Relevance 160
	5.3.3	Examination of Alternative Hierarchical Sequences
		of Independent Variable Sets 160
	5.3.4	Stepwise Regression 161
5.4	The Ar	alysis of Sets of Independent Variables 162
	5.4.1	Types of Sets 162
	5.4.2	The Simultaneous and Hierarchical Analyses of
		Sets 164
	5.4.3	Variance Proportions for Sets and the
		Ballantine Again 166
	5.4.4	<i>B</i> and β Coefficients for Variables Within Sets 169
5.5	Signific	cance Testing for Sets 171
	5.5.1	Application in Hierarchical Analysis 172
	5.5.2	Application in Simultaneous Analysis 173
	5.5.3	Using Computer Output to Determine Statistical
		Significance 174
	5.5.4	An Alternative F Test: Using Model 2 Error Estimate
		From the Final Model 174
5.6	Power	Analysis for Sets 176
	5.6.1	Determining n^* for the F Test of sR_B^2 with Model 1
		or Model 2 Error 177
	5.6.2	Estimating the Population sR^2 Values 179
	5.6.3	Setting Power for n^* 180
	5.6.4	Reconciling Different <i>n</i> *s 180
	5.6.5	Power as a Function of <i>n</i> 181
	5.6.6	Tactics of Power Analysis 182
5.7	Statisti	cal Inference Strategy in Multiple Regression/
	Correla	ation 182
	5.7.1	Controlling and Balancing Type I and Type II Errors
		in Inference 182
	5.7.2	Less Is More 185
	5.7.3	Least Is Last 186
	5.7.4	Adaptation of Fisher's Protected t Test 187
	5.7.5	Statistical Inference and the Stage of Scientific
		Investigations 190

5.8 Summary 190

Chapter 6: Quantitative Scales, Curvilinear Relationships, and Transformations

193

6.1.1 What Do We Mean by Linear Regression? 193

- 6.1.2 Linearity in the Variables and Linear Multiple Regression 194
- 6.1.3 Four Approaches to Examining Nonlinear Relationships in Multiple Regression 195
- 6.2 Power Polynomials 196
 - 6.2.1 Method 196
 - 6.2.2 An Example: Quadratic Fit 198
 - 6.2.3 Centering Predictors in Polynomial Equations 201
 - 6.2.4 Relationship of Test of Significance of Highest Order Coefficient and Gain in Prediction 204
 - 6.2.5 Interpreting Polynomial Regression Results 205
 - 6.2.6 Another Example: A Cubic Fit 207
 - 6.2.7 Strategy and Limitations 209
 - 6.2.8 More Complex Equations 213
- 6.3 Orthogonal Polynomials 214
 - 6.3.1 The Cubic Example Revisited 216
 - 6.3.2 Unequal *n* and Unequal Intervals 219
 - 6.3.3 Applications and Discussion 220
- 6.4 Nonlinear Transformations 221
 - 6.4.1 Purposes of Transformation and the Nature of Transformations 221
 - 6.4.2 The Conceptual Basis of Transformations and Model Checking Before and After Transformation—Is It Always Ideal to Transform? 223
 - 6.4.3 Logarithms and Exponents; Additive and Proportional Relationships 223
 - 6.4.4 Linearizing Relationships 225
 - 6.4.5 Linearizing Relationships Based on Strong Theoretical Models 227
 - 6.4.6 Linearizing Relationships Based on Weak Theoretical Models 232
 - 6.4.7 Empirically Driven Transformations in the Absence of Strong or Weak Models 233
 - 6.4.8 Empirically Driven Transformation for Linearization: The Ladder of Re-expression and the Bulging Rule 233
 - 6.4.9 Empirically Driven Transformation for Linearization in the Absence of Models: Box-Cox Family of Power Transformations on Y 236
 - 6.4.10 Empirically Driven Transformation for Linearization in the Absence of Models: Box-Tidwell Family of Power Transformations on X 239
 - 6.4.11 Linearization of Relationships With Correlations: Fisher z' Transform of r 240
 - 6.4.12 Transformations That Linearize Relationships for Counts and Proportions 240
 - 6.4.13 Variance Stabilizing Transformations and Alternatives for Treatment of Heteroscedasticity 244
 - 6.4.14 Transformations to Normalize Variables 246
 - 6.4.15 Diagnostics Following Transformation 247

- 6.4.16 Measuring and Comparing Model Fit 248
- 6.4.17 Second-Order Polynomial Numerical Example Revisited 248
- 6.4.18 When to Transform and the Choice of Transformation 249
- 6.5 Nonlinear Regression 251
- 6.6 Nonparametric Regression 252
- 6.7 Summary 253

Chapter 7: Interactions Among Continuous Variables

- 7.1 Introduction 255
 - 7.1.1 Interactions Versus Additive Effects 256
 - 7.1.2 Conditional First-Order Effects in Equations Containing Interactions 259
- 7.2 Centering Predictors and the Interpretation of Regression Coefficients in Equations Containing Interactions 261
 - 7.2.1 Regression with Centered Predictors 261
 - 7.2.2 Relationship Between Regression Coefficients in the Uncentered and Centered Equations 262
 - 7.2.3 Centered Equations With No Interaction 262
 - 7.2.4 Essential Versus Nonessential Multicollinearity 264
 - 7.2.5 Centered Equations With Interactions 264
 - 7.2.6 The Highest Order Interaction in the Centered Versus Uncentered Equation 266
 - 7.2.7 Do Not Center Y 266
 - 7.2.8 A Recommendation for Centering 266
- 7.3 Simple Regression Equations and Simple Slopes 267
 - 7.3.1 Plotting Interactions 269
 - 7.3.2 Moderator Variables 269
 - 7.3.3 Simple Regression Equations 269
 - 7.3.4 Overall Regression Coefficient and Simple Slope at the Mean 270
 - 7.3.5 Simple Slopes From Uncentered Versus Centered Equations Are Identical 271
 - 7.3.6 Linear by Linear Interactions 271
 - 7.3.7 Interpreting Interactions in Multiple Regression and Analysis of Variance 272
- 7.4 Post Hoc Probing of Interactions 272
 - 7.4.1 Standard Error of Simple Slopes 272
 - 7.4.2 Equation Dependence of Simple Slopes and Their Standard Errors 273
 - 7.4.3 Tests of Significance of Simple Slopes 273
 - 7.4.4 Confidence Intervals Around Simple Slopes 274
 - 7.4.5 A Numerical Example 275
 - 7.4.6 The Uncentered Regression Equation Revisited 281
 - 7.4.7 First-Order Coefficients in Equations Without and With Interactions 281
 - 7.4.8 Interpretation and the Range of Data 282

xiv CONTENTS

- 7.5 Standardized Estimates for Equations Containing Interactions 282
- 7.6 Interactions as Partialed Effects: Building Regression Equations With Interactions 284
- 7.7 Patterns of First-Order and Interactive Effects 285
 - 7.7.1 Three Theoretically Meaningful Patterns of First-Order and Interaction Effects 285
 - 7.7.2 Ordinal Versus Disordinal Interactions 286
- 7.8 Three-Predictor Interactions in Multiple Regression 290
- 7.9 Curvilinear by Linear Interactions 292
- 7.10 Interactions Among Sets of Variables 295
- 7.11 Issues in the Detection of Interactions: Reliability, Predictor Distributions, Model Specification 297
 - 7.11.1 Variable Reliability and Power to Detect Interactions 297
 - 7.11.2 Sampling Designs to Enhance Power to Detect Interactions—Optimal Design 298
 - 7.11.3 Difficulty in Distinguishing Interactions Versus Curvilinear Effects 299
- 7.12 Summary 300

Chapter 8: Categorical or Nominal Independent Variables 302

8.1	Introduc	tion 302
	8.1.1	Categories as a Set of Independent Variables 302
	8.1.2	The Representation of Categories or Nominal
		Scales 302
8.2	Dummy-	Variable Coding 303
	8.2.1	Coding the Groups 303
	8.2.2	Pearson Correlations of Dummy Variables
		With <i>Y</i> 308
	8.2.3	Correlations Among Dummy-Coded Variables 311
	8.2.4	Multiple Correlation of the Dummy-Variable Set
		With <i>Y</i> 311
	8.2.5	Regression Coefficients for Dummy Variables 312
	8.2.6	Partial and Semipartial Correlations for Dummy
		Variables 316
	8.2.7	Dummy-Variable Multiple Regression/Correlation
		and One-Way Analysis of Variance 317
	8.2.8	A Cautionary Note: Dummy-Variable-Like Coding
		Systems 319
	8.2.9	Dummy-Variable Coding When Groups Are Not
		Mutually Exclusive 320
8.3	•	ted Effects Coding 320
	8.3.1	Introduction: Unweighted and Weighted Effects
		Coding 320
	8.3.2	Constructing Unweighted Effects Codes 321
	8.3.3	The R^2 and the $r_{\gamma i}$ s for Unweighted Effects Codes 324
	8.3.4	Regression Coefficients and Other Partial Effects in
		Unweighted Code Sets 325

- 8.4 Weighted Effects Coding 328
 - 8.4.1 Selection Considerations for Weighted Effects Coding 328
 - 8.4.2 Constructing Weighted Effects 328
 - 8.4.3 The R^2 and \tilde{R}^2 for Weighted Effects Codes 330
 - 8.4.4 Interpretation and Testing of *B* With Unweighted Codes 331
- 8.5 Contrast Coding 332
 - 8.5.1 Considerations in the Selection of a Contrast Coding Scheme 332
 - 8.5.2 Constructing Contrast Codes 333
 - 8.5.3 The R^2 and \tilde{R}^2 337
 - 8.5.4 Partial Regression Coefficients 337
 - 8.5.5 Statistical Power and the Choice of Contrast Codes 340
- 8.6 Nonsense Coding 341
- 8.7 Coding Schemes in the Context of Other Independent Variables 342
 - 8.7.1 Combining Nominal and Continuous Independent Variables 342
 - 8.7.2 Calculating Adjusted Means for Nominal Independent Variables 343
 - 8.7.3 Adjusted Means for Combinations of Nominal and Quantitative Independent Variables 344
 - 8.7.4 Adjusted Means for More Than Two Groups and Alternative Coding Methods 348
 - 8.7.5 Multiple Regression/Correlation With Nominal Independent Variables and the Analysis of Covariance 350
- 8.8 Summary 351

Chapter 9: Interactions With Categorical Variables

9.1	Nominal	Scale by Nominal Scale Interactions 354
	9.1.1	The 2 by 2 Design 354
	9.1.2	Regression Analyses of Multiple Sets of Nominal
		Variables With More Than Two Categories 361
9.2	Interactio	ns Involving More Than Two Nominal Scales 366
	9.2.1	An Example of Three Nominal Scales Coded by
		Alternative Methods 367
	9.2.2	Interactions Among Nominal Scales in Which Not All
		Combinations Are Considered 372
	9.2.3	What If the Categories for One or More Nominal
		"Scales" Are Not Mutually Exclusive? 373
	9.2.4	Consideration of pr , β , and Variance Proportions for
		Nominal Scale Interaction Variables 374
	9.2.5	Summary of Issues and Recommendations for
		Interactions Among Nominal Scales 374
9.3	Nominal	Scale by Continuous Variable Interactions 375
	9.3.1	A Reminder on Centering 375

xvi CONTENTS

- 9.3.2 Interactions of a Continuous Variable With Dummy-Variable Coded Groups 375
- 9.3.3 Interactions Using Weighted or Unweighted Effects Codes 378
- 9.3.4 Interactions With a Contrast-Coded Nominal Scale 379
- 9.3.5 Interactions Coded to Estimate Simple Slopes of Groups 380
- 9.3.6 Categorical Variable Interactions With Nonlinear Effects of Scaled Independent Variables 383
- 9.3.7 Interactions of a Scale With Two or More Categorical Variables 386
- 9.4 Summary 388

Chapter 10: Outliers and Multicollinearity: Diagnosing and Solving Regression Problems II

10.1	Introducti	on 390	
10.2	Outliers: 1	Introduction and Illustration 391	
10.3	0.3 Detecting Outliers: Regression Diagnostics 394		
	10.3.1	Extremity on the Independent Variables:	
		Leverage 394	
	10.3.2	Extremity on Y: Discrepancy 398	
	10.3.3	Influence on the Regression Estimates 402	
		Location of Outlying Points and Diagnostic	
		Statistics 406	
	10.3.5	Summary and Suggestions 409	
10.4	Sources o	f Outliers and Possible Remedial Actions 411	
	10.4.1	Sources of Outliers 411	
	10.4.2	Remedial Actions 415	
10.5	Multicolli	nearity 419	
	10.5.1	Exact Collinearity 419	
	10.5.2	Multicollinearity: A Numerical Illustration 420	
	10.5.3	Measures of the Degree of Multicollinearity 422	
10.6	Remedies	for Multicollinearity 425	
	10.6.1	Model Respecification 426	
	10.6.2	Collection of Additional Data 427	
	10.6.3	Ridge Regression 427	
	10.6.4	Principal Components Regression 428	
	10.6.5	Summary of Multicollinearity Considerations 429	
10.7	Summary	430	

Chapter 11: Missing Data

11.1	Basic Issues in Handling Missing Data			31	
	11.1.1	Minimize Missing Data	431		
	11.1.2	Types of Missing Data	432		
	11.1.3	Traditional Approaches to	o Missing	Data	433

390

- 11.2 Missing Data in Nominal Scales 435
 - 11.2.1 Coding Nominal Scale X for Missing Data 435
 - 11.2.2 Missing Data on Two Dichotomies 439
 - 11.2.3 Estimation Using the EM Algorithm 440
- 11.3 Missing Data in Quantitative Scales 442
 - 11.3.1 Available Alternatives 442
 - 11.3.2 Imputation of Values for Missing Cases 444
 - 11.3.3 Modeling Solutions to Missing Data in Scaled Variables 447
 - 11.3.4 An Illustrative Comparison of Alternative Methods 447
 - 11.3.5 Rules of Thumb 450
- 11.4 Summary 450

Chapter 12: Multiple Regression/Correlation and Causal Models

- 12.1 Introduction 452
 - 12.1.1 Limits on the Current Discussion and the Relationship Between Causal Analysis and Analysis of Covariance 452
 - 12.1.2 Theories and Multiple Regression/Correlation Models That Estimate and Test Them 454
 - 12.1.3 Kinds of Variables in Causal Models 457
 - 12.1.4 Regression Models as Causal Models 459
- 12.2 Models Without Reciprocal Causation 460
 - 12.2.1 Direct and Indirect Effects 460
 - 12.2.2 Path Analysis and Path Coefficients 464
 - 12.2.3 Hierarchical Analysis and Reduced Form Equations 465
 - 12.2.4 Partial Causal Models and the Hierarchical Analysis of Sets 466
 - 12.2.5 Testing Model Elements 467
- 12.3 Models With Reciprocal Causation 467
- 12.4 Identification and Overidentification 468
 - 12.4.1 Just Identified Models 468
 - 12.4.2 Overidentification 468
 - 12.4.3 Underidentification 469
- 12.5 Latent Variable Models 469
 - 12.5.1 An Example of a Latent Variable Model 469
 - 12.5.2 How Latent Variables Are Estimated 471
 - 12.5.3 Fixed and Free Estimates in Latent Variable Models 472
 - 12.5.4 Goodness-of-Fit Tests of Latent Variable Models 472
 - 12.5.5 Latent Variable Models and the Correction for Attenuation 473
 - 12.5.6 Characteristics of Data Sets That Make Latent Variable Analysis the Method of Choice 474
- 12.6 A Review of Causal Model and Statistical Assumptions 475

- 12.6.1 Specification Error 475
- 12.6.2 Identification Error 475
- 12.7 Comparisons of Causal Models 476
 - 12.7.1 Nested Models 476
 - 12.7.2 Longitudinal Data in Causal Models 476
- 12.8 Summary 477

Chapter 13: Alternative Regression Models: Logistic, Poisson Regression, and the Generalized Linear Model

13.1	Ordinary	Least Squares Regression Revisited 479
	13.1.1	Three Characteristics of Ordinary Least Squares
		Regression 480
	13.1.2	The Generalized Linear Model 480
	13.1.3	Relationship of Dichotomous and Count Dependent
		Variables Y to a Predictor 481
13.2	Dichotor	nous Outcomes and Logistic Regression 482
	13.2.1	Extending Linear Regression: The Linear Probability
		Model and Discriminant Analysis 483
	13.2.2	The Nonlinear Transformation From Predictor
		to Predicted Scores: Probit and Logistic
		Transformation 485
	13.2.3	The Logistic Regression Equation 486
	13.2.4	Numerical Example: Three Forms of the Logistic
		Regression Equation 487
	13.2.5	Understanding the Coefficients for the Predictor
		in Logistic Regression 492
	13.2.6	Multiple Logistic Regression 493
	13.2.7	Numerical Example 494
	13.2.8	Confidence Intervals on Regression Coefficients
		and Odds Ratios 497
	13.2.9	Estimation of the Regression Model: Maximum
		Likelihood 498
	13.2.10	Deviances: Indices of Overall Fit of the Logistic
		Regression Model 499
	13.2.11	Multiple R^2 Analogs in Logistic Regression 502
	13.2.12	Testing Significance of Overall Model Fit: The
		Likelihood Ratio Test and the Test of Model
		Deviance 504
	13.2.13	χ^2 Test for the Significance of a Single Predictor in a
		Multiple Logistic Regression Equation 507
	13.2.14	Hierarchical Logistic Regression: Likelihood Ratio χ^2
		Test for the Significance of a Set of Predictors Above
		and Beyond Another Set 508
	13.2.15	Akaike's Information Criterion and the Bayesian
		Information Criterion for Model Comparison 509
	13.2.16	Some Treachery in Variable Scaling and Interpretation
		of the Odds Ratio 509

- 13.2.17 Regression Diagnostics in Logistic Regression 512
- 13.2.18 Sparseness of Data 516
- 13.2.19 Classification of Cases 516
- 13.3 Extensions of Logistic Regression to Multiple Response Categories: Polytomous Logistic Regression and Ordinal Logistic Regression 519
 - 13.3.1 Polytomous Logistic Regression 519
 - 13.3.2 Nested Dichotomies 520
 - 13.3.3 Ordinal Logistic Regression 522
- 13.4 Models for Count Data: Poisson Regression and Alternatives 525
 - 13.4.1 Linear Regression Applied to Count Data 525
 - 13.4.2 Poisson Probability Distribution 526
 - 13.4.3 Poisson Regression Analysis 528
 - 13.4.4 Overdispersion and Alternative Models 530
 - 13.4.5 Independence of Observations 532
 - 13.4.6 Sources on Poisson Regression 532
- 13.5 Full Circle: Parallels Between Logistic and Poisson Regression, and the Generalized Linear Model 532
 - 13.5.1 Parallels Between Poisson and Logistic Regression 532
 - 13.5.2 The Generalized Linear Model Revisited 534
- 13.6 Summary 535

Chapter 14: Random Coefficient Regression and Multilevel Models

- 14.1 Clustering Within Data Sets 536
 - 14.1.1 Clustering, Alpha Inflation, and the Intraclass Correlation 537
 - 14.1.2 Estimating the Intraclass Correlation 538
- 14.2 Analysis of Clustered Data With Ordinary Least Squares Approaches 539
 - 14.2.1 Numerical Example, Analysis of Clustered Data With Ordinary Least Squares Regression 541
- 14.3 The Random Coefficient Regression Model 543
- 14.4 Random Coefficient Regression Model and Multilevel Data Structure 544
 - 14.4.1 Ordinary Least Squares (Fixed Effects) Regression Revisited 544
 - 14.4.2 Fixed and Random Variables 544
 - 14.4.3 Clustering and Hierarchically Structured Data 545
 - 14.4.4 Structure of the Random Coefficient Regression Model 545
 - 14.4.5 Level 1 Equations 546
 - 14.4.6 Level 2 Equations 547
 - 14.4.7 Mixed Model Equation for Random Coefficient Regression 548
 - 14.4.8 Variance Components—New Parameters in the Multilevel Model 548
 - 14.4.9 Variance Components and Random Coefficient Versus Ordinary Least Squares (Fixed Effects) Regression 549

XX CONTENTS

- 14.4.10Parameters of the Random Coefficient Regression Model:Fixed and Random Effects550
- 14.5 Numerical Example: Analysis of Clustered Data With Random Coefficient Regression 550
 - 14.5.1 Unconditional Cell Means Model and the Intraclass Correlation 551
 - 14.5.2Testing the Fixed and Random Parts of the Random
Coefficient Regression Model552
- 14.6 Clustering as a Meaningful Aspect of the Data 553
- 14.7 Multilevel Modeling With a Predictor at Level 2 553
 - 14.7.1 Level 1 Equations 553
 - 14.7.2 Revised Level 2 Equations 554
 - 14.7.3 Mixed Model Equation With Level 1 Predictor and Level2 Predictor of Intercept and Slope and the Cross-LevelInteraction 554
- 14.8An Experimental Design as a Multilevel Data Structure: Combining
Experimental Manipulation With Individual Differences555
- 14.9 Numerical Example: Multilevel Analysis 556
- 14.10 Estimation of the Multilevel Model Parameters: Fixed Effects, Variance Components, and Level 1 Equations 560
 - 14.10.1 Fixed Effects and Variance Components 560
 - 14.10.2 An Equation for Each Group: Empirical Bayes Estimates of Level 1 Coefficients 560
- 14.11 Statistical Tests in Multilevel Models 563
 - 14.11.1 Fixed Effects 563
 - 14.11.2 Variance Components 563
- 14.12 Some Model Specification Issues 564
 - 14.12.1 The Same Variable at Two Levels 564
 - 14.12.2 Centering in Multilevel Models 564
- 14.13 Statistical Power of Multilevel Models 565
- 14.14 Choosing Between the Fixed Effects Model and the Random Coefficient Model 565
- 14.15 Sources on Multilevel Modeling 566
- 14.16 Multilevel Models Applied to Repeated Measures Data 566
- 14.17 Summary 567

Chapter 15: Longitudinal Regression Methods

- 15.1 Introduction 568
 - 15.1.1 Chapter Goals 568
 - 15.1.2 Purposes of Gathering Data on Multiple Occasions 569
- 15.2 Analyses of Two-Time-Point Data 569
 - 15.2.1 Change or Regressed Change? 570
 - 15.2.2 Alternative Regression Models for Effects Over a Single Unit of Time 571
 - 15.2.3 Three- or Four-Time-Point Data 573
- 15.3 Repeated Measure Analysis of Variance 573

- 15.3.1 Multiple Error Terms in Repeated Measure Analysis of Variance 574
- 15.3.2 Trend Analysis in Analysis of Variance 575
- 15.3.3 Repeated Measure Analysis of Variance in Which Time Is Not the Issue 576
- 15.4 Multilevel Regression of Individual Changes Over Time 578
 - 15.4.1 Patterns of Individual Change Over Time 578
 - 15.4.2 Adding Other Fixed Predictors to the Model 582
 - 15.4.3Individual Differences in Variation Around Individual
Slopes583
 - 15.4.4 Alternative Developmental Models and Error Structures 584
 - 15.4.5 Alternative Link Functions for Predicting Y From Time 586
 - 15.4.6 Unbalanced Data: Variable Timing and Missing Data 587
- 15.5 Latent Growth Models: Structural Equation Model Representation of Multilevel Data 588
 - 15.5.1 Estimation of Changes in True Scores 589
 - 15.5.2 Representation of Latent Growth Models in Structural Equation Model Diagrams 589
 - 15.5.3 Comparison of Multilevel Regression and Structural Equation Model Analysis of Change 594
- 15.6 Time Varying Independent Variables 595
- 15.7 Survival Analysis 596
 - 15.7.1 Regression Analysis of Time Until Outcome and the Problem of Censoring 596
 - 15.7.2 Extension to Time-Varying Independent Variables 599
 - 15.7.3 Extension to Multiple Episode Data 599
 - 15.7.4 Extension to a Categorical Outcome: Event-History Analysis 600
- 15.8 Time Series Analysis 600
 - 15.8.1 Units of Observation in Time Series Analyses 601
 - 15.8.2 Time Series Analyses Applications 601
 - 15.8.3 Time Effects in Time Series 602
 - 15.8.4 Extension of Time Series Analyses to Multiple Units or Subjects 602
- 15.9 Dynamic System Analysis 602
- 15.10 Statistical Inference and Power Analysis in Longitudinal Analyses 604
- 15.11 Summary 605

Chapter 16: Multiple Dependent Variables: Set Correlation

608

 16.1 Introduction to Ordinary Least Squares Treatment of Multiple Dependent Variables 608
16.1.1 Set Correlation Analysis 608

- 16.1.2 Canonical Analysis 609
- 16.1.3 Elements of Set Correlation 610
- 16.2 Measures of Multivariate Association 610
 - 16.2.1 $R_{Y,X}^2$, the Proportion of Generalized Variance 610
 - 16.2.2 $T_{Y,X}^2$ and $P_{Y,X}^2$, Proportions of Additive Variance 611
- 16.3 Partialing in Set Correlation 613
 - 16.3.1 Frequent Reasons for Partialing Variable Sets From the Basic Sets 613
 - 16.3.2 The Five Types of Association Between Basic Y and X Sets 614
- 16.4 Tests of Statistical Significance and Statistical Power 615
 - 16.4.1 Testing the Null Hypothesis 615
 - 16.4.2 Estimators of the Population R_{YX}^2 , T_{YX}^2 , and P_{YX}^2 616
 - 16.4.3 Guarding Against Type I Error Inflation 617
- 16.5 Statistical Power Analysis in Set Correlation 617
- 16.6 Comparison of Set Correlation With Multiple Analysis of Variance 619
- 16.7 New Analytic Possibilities With Set Correlation 620
- 16.8 Illustrative Examples 621
 - 16.8.1 A Simple Whole Association 621
 - 16.8.2 A Multivariate Analysis of Partial Variance 622
 - 16.8.3 A Hierarchical Analysis of a Quantitative Set and Its Unique Components 623
 - 16.8.4 Bipartial Association Among Three Sets 625
- 16.9 Summary 627

APPENDICES

Appendix 1: The Mathematical Basis for Multiple Regression/Correlation and Identification of the Inverse Matrix Elements

- A1.1 Alternative Matrix Methods 634
- A1.2 Determinants 634

Appendix 2: Determination of the Inverse Matrix and Applications Thereof

- A2.1 Hand Calculation of the Multiple Regression/Correlation Problem 636
- A2.2 Testing the Difference Between Partial β s and *B*s From the Same Sample 640
- A2.3 Testing the Difference Between βs for Different Dependent Variables From a Single Sample 642

636

Appendix Tables

Table A	t Values for $\alpha = .01, .05$ (Two Tailed) 643
Table B	z' Transformation of r 644
Table C	Normal Distribution 645
Table D	F Values for $\alpha = .01, .05$ 646
Table E	L Values for $\alpha = .01, .05$ 650
Table F	Power of Significance Test of r at $\alpha = .01, .05$
	(Two Tailed) 652
Table G	n^* to Detect r by t Test at $\alpha = .01, .05$
	(Two Tailed) 654

References	655
Glossary	671
Statistical Symbols and Abbreviations	683
Author Index	687
Subject Index	691