FRACTALS

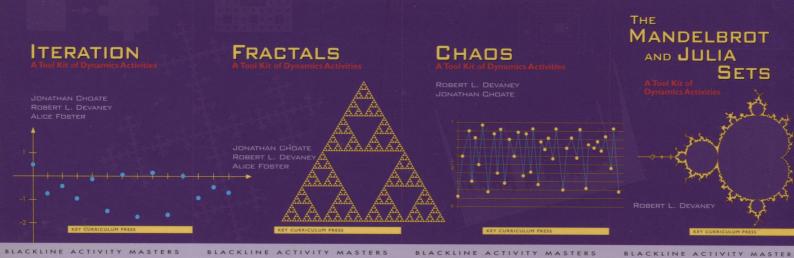
A Tool Kit of Dynamics Activities

Fractals, chaos, and dynamics represent a popular and exciting field of mathematics developed in recent decades. Robert Devaney, Alice Foster, and Jonathan Choate have created a collection of tool kits of dynamics activities in response to the demand that this fascinating field become accessible to school-age students. Not only do students and teachers find the study of chaos and fractals to be intriguing, they also find a strong alignment with topics already present in contemporary mathematics curricula.

The availability of technology that can perform calculations quickly has allowed for much of the development of these mathematical topics. In most cases the activities are not dependent on any particular technology, in recognition of the varied access different classrooms have to different types of technology. However, technology tips indicate where graphing calculators, spreadsheets, computer graphic applications, or the World Wide Web can enhance a particular lesson. In addition, the authors support the books through a Web site that includes interactive Java™—applets for students.

Each lesson contains the following features:

Teacher Notes that give detailed advice on how to plan for and organize the lesson.


Explanation pages for the student and teacher that clearly explain the mathematical content of the lesson.

Investigations in blackline master format that lead students through a guided discovery of the content of the lesson.

Further Exploration problems that provide students with more exposure to the ideas of the lesson.

Fractals focuses on showing how to generate these remarkable shapes using a variety of techniques. Topics include self-similarity, the chaos game (also showing variations of the game), understanding and calculating fractal dimension (including the dimensions of natural fractals), and the area and perimeter of fractals. Within these contexts students create and study various fractals including the Sierpiński triangle, the Koch curve, and the Cantor middle-thirds set.

The complete Tool Kit of Dynamics Activities collection includes the following titles:

CONTENTS

LETTER FROM THE AUTHORS		N/II
		VII
INTRODUCTION: WHY FRACTALS?		XI
Lesson 1 ⊳ Geometric Iteration	MS A1 G	A2 P/C
TEACHER NOTES		1
EXPLANATION	sammate garde	9
INVESTIGATIONS		12
FURTHER EXPLORATION		17
Lesson 2 ▶ Fractals Generated by Removals	MS A1 G	A2 P/C
TEACHER NOTES		19
EXPLANATION		26
INVESTIGATIONS		29
FURTHER EXPLORATION		32
Lesson 3 ⊳ Self-Similarity	MS A1 G	A2 P/C
TEACHER NOTES		33
EXPLANATION		38
INVESTIGATIONS		42
FURTHER EXPLORATION		47
Lesson 4 ▶ Copies of Copies	MS A1 G	AZ P/C
TEACHER NOTES		49
EXPLANATION		52
INVESTIGATIONS		58
FURTHER EXPLORATION		63

Curriculum Correlation Key

0	Small portion of lesson is relevant to
	indicated stage of curriculum.

- About half of lesson is relevant.
- Entire lesson is relevant.
- Lesson is particularly relevant and could replace a traditional lesson.

Ms Middle School

A1 Algebra

G Geometry

A2 Algebra 2

P/C Precalculus or Calculus

Lesson 5 ► Random Iteration: The Chaos Game	MS A1 G A2 P/C
TEACHER NOTES	65
EXPLANATION	72
INVESTIGATIONS	79
FURTHER EXPLORATION	86
Lesson 6 ⊳ Other Chaos Games	G AZ P/C
TEACHER NOTES	87
EXPLANATION	91
INVESTIGATIONS	95
FURTHER EXPLORATION	99
	G A2 P/C
Lesson 7 ► Rotations and the Chaos Game	G A2 P/C
TEACHER NOTES	101
EXPLANATION	103
INVESTIGATIONS	105
FURTHER EXPLORATION	110
	A1 G A2 P/C
Lesson 8 ⊳ Investigating Sierpiński	
TEACHER NOTES	113
INVESTIGATIONS	115
Lesson 9 ▶ Fractal Dimension	AZ P/C
TEACHER NOTES	127
EXPLANATION	129
INVESTIGATIONS	137
FURTHER EXPLORATION	142
	AZ P/C
Lesson 10 ⊳ Natural Fractals	
TEACHER NOTES	143
EXPLANATION	145
INVESTIGATIONS	153
FURTHER EXPLORATION	157

Lesson 11 ▶ Areas and Perimeters of Fractals	AZ P/C
TEACHER NOTES EXPLANATION INVESTIGATIONS FURTHER EXPLORATION	159 161 166 169
Lesson 12 ⊳ Decoding the Cantor Set	A2 P/C
TEACHER NOTES EXPLANATION INVESTIGATIONS FURTHER EXPLORATION	171 172 176 181
Answers	