Contents

Pa	rt I History, Concepts, Models, and Goals	1
1	Introduction	3
	1.1 History of the habitat concept	3
	1.2 Definitions and terminology	22
	1.3 Conclusion	24
	References	24
2	Ecology and Wildlife Ecology as Distinct Academic Disciplines	25
	References	37
3	The Primacy of Habitat	39
	3.1 Habitat cueing in barnacles and reef fishes	46
	3.2 Models of habitat selection	50
	3.3 Physical features and structure as habitat cues	53
	3.4 Strength and efficacy of environmental cues	57
	3.5 Scaling of environmental cueing	58
	3.6 Settling versus sampling of habitat	59
	3.7 From neon gobies to kangaroo rats: the generality of the DSE process	61
	3.8 Heuristic predictions	62
	3.9 Summary	65
	References	66
4	Goals of Characterizing a Species Habitat	73
	4.1 Habitat management	73
	4.2 Carrying capacity and population dynamics	74
	4.3 Species interactions	75
	4.4 Habitat preference and selection	76
	4.5 Species distribution models	77
	4.6 Conclusion	77
	References	78

	P/	ART II Statistical Methods of Analysis	81
	5	Types of Data and the General Framework of Analysis	83
		References	87
	6	Issues Based on Species Life History and Behavior	89
		6.1 Difference between breeding and foraging habitat	89
		6.2 Use of different types of habitat during different life stages	90
		6.3 Seasonality of habitat use	91
		6.4 Individual movement and the scale of habitat use	91
		References	92
	7	Design and Statistical Issues Related to Habitat Analysis	95
		7.1 Area to include in the study	95
		7.2 How to handle absence data	96
		7.3 Imperfect detection probability	96
		7.4 Presence, absence, and availability	97
		7.5 Non-count data indicating habitat use or activity	98
		7.6 Habitat sampling plots established a posteriori	99
		7.7 Effect of background density	99
		7.8 Normality of the response and predictor variables	101
		7.9 Multicollinearity among predictor variables	103
		7.10 Spatial and temporal autocorrelation	105
		7.11 Standardization of predictor variables	107
		7.12 Number of predictor variables to include in the analysis	108
		7.13 Home range analysis	109
		7.14 Difference between measuring habitat preference/	110
		References	110
		ngerenues	
	8	Analysis of the Habitat Associations of a Hypothetical Beetle Species	117
		8.1 Survey design and data collected	117
		8.2 Checking for normality of the response and predictor variables	119
		8.3 Checking for multicollinearity among the predictor variables	120
		8.4 Methods of habitat analysis as applied to the hypothetical	100
		beetle species	122
		8.4.1 Comparison among group means—beetle example	122
		8.4.2 Multiple linear regression—beetle example	123
		8.4.4 Classification and regression—beetle example	125
		8.4.5 Multivariate analysis bootle example	126
		8.5 Inference from the heatle example	129
		Amondix 8.1 Dataset of hunothetical heetle energies	130
1		References	134
		injerence -	104

9 Statistical Methods for Analyzing Species–Habitat Associations	. 135			
9.1 Comparison of group means	135			
9.1.1 Different types of ANOVA	136			
9.1.2 Multi-way ANOVA applied to beetle data	137			
9.1.3 ANOVA on groups defined by an environmental variable	139			
9.1.4 Creating groups for an ANOVA	140			
9.2 Multiple linear regression	140			
9.2.1 Negative binomial regression	143			
9.2.2 Zero-inflated regression models	147			
9.2.3 Interpreting regression coefficients	149			
9.3 Multiple logistic regression	149			
9.3.1 Logistic population growth as a logistic regression	152			
9.3.2 Multiple logistic regression as the method of choice	152			
9.4 Classification and regression trees	153			
9.4.1 Splitting of groups	154			
9.4.2 Pruning of trees	155			
9.4.3 Using CART for habitat analysis	156			
9.5 Multivariate techniques	157			
9.5.1 Principal components analysis	157			
9.5.2 Discriminant function analysis	160			
9.6 Occupancy modeling	165			
9.7 Conclusion	170			
References	171			
Rejerences	1/1			
10 Post-analysis Procedures	175			
10.1 Assessing model fit	175			
10.2 Comparing models	180			
10.3 Assessing predictive accuracy	183			
Appendix 10.1 Two hypothetical datasets for testing				
the accuracy of the logistic regression model	189			
References	191			
11 Other Techniques Related to Habitat Analysis	193			
11.1 Passaurse selection functions	102			
11.2 Selectivity and preference indices	195			
11.2 Compositional data analysis	190			
11.4 Habitat suitability models	199			
11.5 Species distribution models	202			
References	204			
12 Conclusion	209			
References	212			
Index 21				