This book is an introduction to the theory of partial differential operators. It assumes that the reader has a knowledge of introductory functional analysis, up to the spectral theorem for bounded linear operators on Banach spaces. However, it describes the theory of Fourier transforms and distributions as far as is needed to analyse the spectrum of any constant coefficient partial differential operator. A completely new proof of the spectral theorem for unbounded self-adjoint operators is followed by its application to a variety of second order elliptic differential operators, from those with discrete spectra to Schrödinger operators acting on $L^2(\mathbf{R}^N)$. The book contains a detailed account of the application of variational methods to estimate the eigenvalues of operators with measurable coefficients defined by the use of quadratic form techniques.

This book could be used either for self-study or as a course text, and aims to lead the reader to the more advanced literature on the subject.

Cambridge Studies in Advanced Mathematics

EDITORS

D. J. H. Garling University of Cambridge

T. tom Dieck University of Göttingen

P. Walters Warwick University

K. Ribet University of California, Berkeley

W. Fulton University of Chicago

CAMBRIDGE UNIVERSITY PRESS

Preface Preface		page vii
1	The fundamental ideas	1
1.1	Unbounded linear operators	asod syldshill 1
1.2	Self-adjointness	and raidahici and 7
1.3	Multiplication operators	15
1.4	Relatively bounded perturbations	strings and a 17
	Exercises	19
2	The spectral theorem	and masses 22
2.1	Introduction	1 10 2011 19 19 22
2.2	The Helffer-Sjöstrand formula	24
2.3	The first spectral theorem	32
2.4	Invariant and cyclic subspaces	33
2.5	The L^2 spectral representation	36
2.6	Norm resolvent convergence	41
	Exercises	Chorrestina activit 43
3	Translation invariant operators	45
3.1	Introduction	45
3.2	Schwartz space	45
3.3	The Fourier transform	49
3.4	Distributions	52
3.5	Differential operators	57
3.6	Some L^p estimates	62
3.7	The Sobolev spaces $W^{n,2}(\mathbb{R}^N)$	67
	Exercises	70
4	The variational method	72
4.1	Classification of the spectrum	72

4.2	Compact operators		75
4.3	Positivity and fractional powers	AND	78
4.4	Closed quadratic forms	Ty 180 The Thine English	81
4.5	The variational formulae		88
4.6	Lower bounds on eigenvalues	the same transfer	93
	Exercises	Water State Assessed	96
5	Further spectral results	Three lines	99
5.1	The Poisson problem		99
5.2	The heat equation	10	01
5.3	The Hardy inequality	the flux without 1	04
5.4	Singular elliptic operators	10	09
5.5	The biharmonic operator	Liter	13
	Exercises	inchi lateramekonii adii	16
6	Dirichlet boundary conditions	1 Unbounded linear operate	18
6.1	Dirichlet boundary conditions	1 Self-adjointiles/reserve a	18
6.2	The Dirichlet Laplacian	1 Multiplication operators	27
6.3	The general case	1 Relatively bounded device	35
	Exercises	1 Exercises	38
7	Neumann boundary conditions	2 Funescoots letteres of T 1	40
7.1	Properties of the $W^{1,2}$ spaces	ndipolorini 1	40
7.2	Neumann boundary conditions	The Holder-Sjöstrand for	46
7.3	Computation of eigenvalues	mercadt lampage raft adT 15	
16	Exercises	endue sibyo bas inaitsvni 15	
8		[2] [1] [2] [4] [2] [4] [2] [2] [4] [4] [4] [4] [4] [4] [4] [4] [4] [4	55
8.1	Introduction	gorpythoe movioen mioN 15	
8.2	Definition of the operators	i Exercises	56
8.3	The positive spectrum	resun transport cobalcuer /1	64
8.4	Compact perturbations		66
8.5	The negative spectrum	spage shawdae 16	
8.6	Double wells		71
	Exercises		77
Bibli	ography	estemites 1/1 soro2 17	
Nota	tion index		79
Inde.	x		80