Bernard Helffer's graduate-level introduction to the basic tools of spectral analysis is illustrated by numerous examples from the theory of Schrödinger operators and various branches of physics, including statistical mechanics, superconductivity, fluid mechanics, and kinetic theory. The later chapters also introduce the theory of non-self-adjoint operators, with an emphasis on the role of pseudospectra.

The author's focus on applications, along with exercises and examples, enables readers to connect theory with practice so that they develop a good understanding of how the abstract spectral theory can be applied. The final chapter provides various problems that have been the subject of active research in recent years and will challenge the reader's understanding of the material covered.

Cambridge Studies in Advanced Mathematics

EDITORIAL BOARD
Béla Bollobás University of Memphis
William Fulton University of Michigan
Anatole Katok Pennsylvania State University
Frances Kirwan University of Oxford
Peter Sarnak Princeton University
Barry Simon California Institute of Technology
Burt Totaro University of Cambridge

CAMBRIDGE UNIVERSITY PRESS www.cambridge.org

1	Introduction	page 1
2	Unbounded operators, adjoints, and self-adjoint operators	11
3	Representation theorems	22
4	Semibounded operators and the Friedrichs extension	29
5	Compact operators: general properties and examples	42
6	Spectral theory for bounded operators	48
7	Applications to statistical mechanics and partial differential equations	77
8	Self-adjoint unbounded operators and spectral theory	98
9	Essentially self-adjoint operators	119
10	The discrete spectrum and essential spectrum	132
11	The max-min principle	141
12	Spectral questions about the Rayleigh equation	154
13	Non-self-adjoint operators and pseudospectra	164
14	Applications to non-self-adjoint one-dimensional models	188
15	Applications in kinetic theory: the Fokker-Planck operator	216
16	Problems	234
	Bibliography Index	248 253