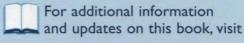
This book is a graduate text on the incompressible Navier-Stokes system, which is of fundamental importance in mathematical fluid mechanics as well as in engineering applications. The goal is to give a rapid exposition on the existence, uniqueness, and regularity of its solutions, with a focus on the regularity problem. To fit into a one-year course for students who have already mastered the basics of PDE theory, many auxiliary results have been described with references but without proofs, and several topics were omitted. Most chapters end with a selection of problems for the reader.


After an introduction and a careful study of weak, strong, and mild solutions, the reader is introduced to partial regularity. The coverage of boundary value problems, self-similar solutions, the uniform L^3 class including the celebrated Escauriaza-Seregin-Šverák Theorem, and axisymmetric flows in later chapters are unique features of this book that are less explored in other texts.

The book can serve as a textbook for a course, as a self-study source for people who already know some PDE theory and wish to learn more about Navier-Stokes equations, or as a reference for some of the important recent developments in the area.

The book is an excellent contribution to the literature concerning the mathematical analysis of the incompressible Navier-Stokes equations. It provides a very good introduction to the subject, covering several important directions, and also presents a number of recent results, with an emphasis on non-perturbative regimes. The book is well written, and both beginners and experts will benefit from it. It can also provide great material for a graduate course.

-Vladimir Šverák, University of Minnesota

www.ams.org/bookpages/gsm-192

Contents

Preface	ix
Notation	xi
Chapter 1. Introduction	1
§1.1. Navier-Stokes equations	1
§1.2. Derivation of Navier-Stokes equations	3
§1.3. Scaling and a priori estimates	6
§1.4. Vorticity	7
§1.5. Pressure	10
§1.6. Helmholtz decomposition	13
§1.7. Notes	17
Problems	17
Chapter 2. Steady states	19
§2.1. Weak solutions	19
§2.2. Small-large uniqueness	22
§2.3. Existence for zero boundary data by the Galerkin method	23
§2.4. Existence for zero boundary data by the Leray-Schauder	
theorem	25
§2.5. Nonuniqueness	29
§2.6. L^q -theory for the linear system	32
§2.7. Regularity	38
§2.8. The Bogovskii map	45
§2.9. Notes	47
Problems Swift William Part of the Market Problems	48

Chapter 3	. Weak solutions	51
§3.1. V	Weak form, energy inequalities, and definitions	51
§3.2. A	Auxiliary results	55
§3.3. I	Existence for the perturbed Stokes system	58
§3.4. (Compactness lemma	60
§3.5. I	Existence of suitable weak solutions	62
§3.6. N	Notes	67
Problen	ns	68
Chapter 4	. Strong solutions	69
	Dimension analysis	70
	Jniqueness	71
	Regularity	75
§4.4. I		77
Problem		77
Chapter 5	. Mild solutions	79
	Nonstationary Stokes system and Stokes semigroup	79
to the last that the last the	Existence of mild solutions	83
	Applications to weak solutions	89
	Notes	92
Problem	ns	92
Chapter 6	. Partial regularity	93
	The set of singular times	94
	The set of singular space-time points	96
	Regularity criteria in scaled norm	97
§6.4. I	Notes	105
Probler	ns	106
Chapter 7	Z. Boundary value problem and bifurcation	107
	Existence: A priori bound by a good extension	108
	Existence: A priori bound by contradiction	112
	The Korobkov-Pileckas-Russo approach for 2D BVP	116
	The bifurcation problem and degree	123
	Bifurcation of the Rayleigh-Bénard convection	128
	Bifurcation of Couette-Taylor flows	133
	Notes	139
Problem		140

Chapter 8. Self-similar solutions	141
§8.1. Self-similar solutions and similarity transform	141
§8.2. Stationary self-similar solutions	145
§8.3. Backward self-similar solutions	150
§8.4. Forward self-similar solutions	158
§8.5. Notes	171
Problems	171
Chapter 9. The uniform L^3 class	173
§9.1. Uniqueness	174
§9.2. Auxiliary results for regularity	176
§9.3. Regularity	178
§9.4. Backward uniqueness and unique continuation	184
§9.5. Notes	187
Chapter 10. Axisymmetric flows	189
§10.1. Axisymmetric Navier-Stokes equations	189
§10.2. No swirl case	195
§10.3. Type I singularity: De Giorgi-Nash-Moser approach	197
§10.4. Type I singularity: Liouville theorem approach	206
§10.5. Connections between the two approaches	209
§10.6. Notes	210
Bibliography	211
Index	223