Contents

1	Coo	ordinate Systems and Vectors	1	
	1.1	Coordinate Systems	2	
	1.2	Measurements and the Metric	10	
	1.3	Vectors in Cartesian Coordinates	15	
	1.4	Derivatives in the Index Notation	25	
	1.5	Cross Products	27	
	1.6	Vectors in Curvilinear Coordinates	34	
2	Ten	sors	41	
	2.1	What's a Vector, Really?	42	
	2.2	Defining Tensors	49	
	2.3	Derivatives and Parallel Transport	55	
	2.4	Calculating the Christoffel Symbols	63	
	2.5	More on the Divergence and Laplacian Operators	68	
	2.6	Integrals and the Levi-Civita Tensor	71	
3	Clas	Classical Covariance		
	3.1	Point Particle Mechanics	78	
	3.2	Rigid Body Mechanics	92	
	3.3	Motion in a Potential	96	
	3.4	Continuum Mechanics	100	
	3.5	Galilean Covariance	105	
4	Special Covariance			
	4.1	Special Relativity, the Basics	116	
	4.2	Four-Vectors and Four-Tensors	125	
	4.3	Lorentz Boosts as Rotations	132	
	4.4	A Bit of Algebra	137	
	4.5		142	
	4.6	Conservation of Four-Momentum	148	
	4.7	A Note on Units	156	
	4.8	Specially Covariant Electrodynamics	159	

xvi Contents

5	Ger	neral Covariance	164
	5.1	What is Spacetime Curvature?	164
	5.2	Gravity as Curvature	169
	5.3	The Newtonian Limit: The Metric of Weak Gravity	179
	5.4	The Metric Outside a Spherical Mass	183
	5.5	The Metric Inside a Spherical Mass	187
	5.6	Areas and Volumes in Curved Spaces	190
	5.7	Non-Rotating Black Holes	194
	5.8	Cosmological Spacetimes	201
6	Phy	rsics in Curved Spacetime	211
	6.1	Generally Covariant Mechanics	211
	6.2	The Schwarzschild Metric as a Case Study	225
	6.3	Generally Covariant Electrodynamics	252
7	Rie	mann and Einstein	254
	7.1	Manifolds	255
	7.2	Calculus on Manifolds	257
	7.3	Curvature	262
	7.4	The Vacuum Einstein Equations	268
	7.5	The Stress Energy Momentum Tensor	275
	7.6	The Einstein Field Equations	278
	7.7	Einstein's Greatest Blunder	283
8	Lea	st Action and Classical Fields	286
	8.1	The Principle of Least Action	286
	8.2	Classical Field Theory	305
	8.3	The Stress Tensor from the Action	311
	8.4	General Relativistic Actions	313
	8.5	The Geodesic Equation One More Time	315
	8.6	Some More Spacetimes	317
9	Diff	erential Forms	326
	9.1	An Easy-Going Intro	327
	9.2	More Generally	333
	9.3	Hodge Duality	339
	9.4	Maxwell's Theory and Differential Forms	344
	9.5	Stokes' Theorem	347
	9.6	Cartan's Formalism	351

		Contents	xvii
10	Generalizing General Relativity		358
	10.1 Brans–Dicke Theory		359
	10.2 f(R) Theory		362
	10.3 Gauss–Bonnet Gravity		365
	10.4 Kaluza–Klein Theory		367
	10.5 Einstein-Cartan Theory		372
Af	terthoughts		374
Re	ferences		376
Inc	lex		378

With the exception of Fig. [5.12] and [8.7], all the figures are original by the author. Software used: "Wolfram Mathematica® 11.3," and "Inkscape® 0.92."