Singular Elliptic Problems provides a comprehensive introduction to the mathematical theory of nonlinear problems described by singular elliptic equations. The book is an elementary introduction to nonlinear elliptic partial differential equations, which arise in the research of various nonlinear and singular phenomena within mathematical physics. Interest in this direction of research relates to the application of these problems in physics, quantum physics, mechanics, genetics, engineering, economics, and differential geometry.

The book lies at the interface between nonlinear analysis, mathematical physics, and variational calculus and is intended for graduate students, post-graduate students, and researchers in PDE and Pure and Applied Mathematics. It is the first monograph treating such nonlinear singular problems and develops two basic methods in nonlinear functional analysis: the maximum principle and critical point theorems. Some of the singular phenomena described in this book include existence (or nonexistence) of solutions, unicity or multiplicity problems, bifurcation and asymptotic analysis, and optimal regularity.

Marius Ghergu is Researcher at the Institute of Mathematics of the Romanian Academy.

Vicenţiu D. Rădulescu is Senior Researcher at the Institute of Mathematics of the Romanian Academy and Professor of Mathematics at the University of Craiova, Romania.

Cover design: Ed Atkeson/Berg Design

I PRELIMINARIES

1	Bas	ic methods	3
	1.1	A fixed point result	3
	1.2	The method of sub- and supersolution	5
	1.3		9
		1.3.1 Weak and strong maximum principle	9
		1.3.2 Maximum principle for weakly differentiable functions	10
		1.3.3 Stampacchia's maximum principle	11
		1.3.4 Vázquez's maximum principle	12
		1.3.5 Pucci and Serrin's maximum principle	15
		1.3.6 A comparison principle in the presence of singular	
		nonlinearities	17
	1.4	Existence properties and related maximum principles	20
		1.4.1 Dead core solutions of sublinear logistic equations	23
		1.4.2 Singular solutions of the logistic equation	24
	1.5	Brezis-Oswald theorem	26
	1.6	Comments and historical notes	32
	II]	BLOW-UP SOLUTIONS	
2	Blo	w-up solutions for semilinear elliptic equations	37
	2.1	Introduction	37
	2.2	Blow-up solution for elliptic equations with vanishing	
		potential	40
		2.2.1 Existence results in bounded domains	40
		2.2.2 Existence results in the whole space	42
	2.3	Blow-up solutions for logistic equations	45
		2.3.1 The case of positive potentials	45
		2.3.2 The case of vanishing potentials	46
	2.4	An equivalent criterion to the Keller–Osserman condition	49
	2.5	Singular solutions of the logistic equation on domains with	
		holes	52
	2.6	Uniqueness of blow-up solution	58
	2.7	A Karamata theory approach for uniqueness of blow-up	
		solution	64
	2.8	Comments and historical notes	71
3	Ent	ire solutions blowing up at infinity for elliptic systems	75
	31	Introduction	75

	3.2	Characterization of the central value set	76
		3.2.1 Bounded or unbounded entire solutions	76
		3.2.2 Role of the Keller–Osserman condition	81
	3.3	Comments and historical notes	89
		ELLIPTIC PROBLEMS WITH SINGULAR NONLINEARITIES	
1	Sub	linear perturbations of singular elliptic problems	93
	4.1	Introduction	93
	4.2	An ODE with mixed nonlinearities	98
	4.3	A complete description for positive potentials	99
	4.4	An example	104
	4.5	Bifurcation for negative potentials	107
	4.6	Existence for large values of parameters in the sign-changing	
		case	112
	4.7	Singular elliptic problems in the whole space	113
		4.7.1 Existence of entire solutions	113
		4.7.2 Uniqueness of radially symmetric solutions	117
	4.8	Comments and historical notes	121
5	Bifu	rcation and asymptotic analysis: The monotone case	125
	5.1	Introduction	126
	5.2	A general bifurcation result	127
	5.3	Existence and bifurcation results	129
	5.4	Asymptotic behavior of the solution with respect to	
		parameters	134
	5.5		137
		5.5.1 First example	137
	- 0	5.5.2 Second example	138
	5.6	The case of singular nonlinearities	140
	5.7	Comments and historical notes	142
3	Bifu	ircation and asymptotic analysis: The nonmonotone	
	case		143
	6.1	Introduction	143
	6.2	Auxiliary results	144
	6.3	Existence and bifurcation results in the nonmonotone case	147
	6.4	An example	154
	6.5	Comments and historical notes	154
7		erlinear perturbations of singular elliptic problems	157
	7.1	Introduction	157
	7.2	The weak sub- and supersolution method	158
	7.3	H^1 local minimizers	161
	7.4	Existence of the first solution	163

			100
	7.5	Existence of the second solution	169
		7.5.1 First case	170
		7.5.2 Second case	174
	7.6	C^1 regularity of solution	182
	7.7	Asymptotic behavior of solutions	184
	7.8	Comments and historical notes	189
8	Stab	oility of the solution of a singular problem	191
	8.1	Stability of the solution in a general singular setting	191
	8.2	A min-max characterization of the first eigenvalue for the	
		linearized problem	199
	8.3	Differentiability of some singular nonlinear problems	201
	8.4	Examples	204
	8.5	Comments and historical notes	205
9	The	influence of a nonlinear convection term in singular	
		tic problems	207
	9.1	Introduction	207
	9.2	A general nonexistence result	208
	9.3	A singular elliptic problem in one dimension	210
	9.4	Existence results in the sublinear case	215
	9.5	Existence results in the linear case	226
	9.6	Boundary estimates of the solution	228
	9.7	The case of a negative singular potential	231
		9.7.1 A nonexistence result	232
		9.7.2 Existence result	233
	9.8	Ground-state solutions of singular elliptic problems with	
		gradient term	238
	9.9	Comments and historical notes	241
10			
10		gular Gierer-Meinhardt systems	243
		Introduction	243
		A nonexistence result	244
		Existence results	248
	10.4	Uniqueness of the solution in one dimension	255
	10.5	Comments and historical notes	261
Ap	pend	ix A Spectral theory for differential operators	265
	A.1	Eigenvalues and eigenfunctions for the Laplace operator	265
	A.2	Krein–Rutman theorem	266
Ap	pend	ix B Implicit function theorem	269
Ap	pend	lix C Ekeland's variational principle	273
	C.1	Minimization of weak lower semicontinuous coercive	
		functionals	273
	C.2	Ekeland's variational principle	273
		F3	

Appendix D Mountain pass theorem	277
D.1 Ambrosetti–Rabinowitz theorem	277
D.2 Application to the Emden–Fowler equation	281
D.3 Mountains of zero altitude	282
References	283
Index	295