

PART IV: ITERATIVE NUMERICAL TECHNIQUES FOR OPTIMIZATION

3.1 A Recurrence Relation to Determine Optimal Trajectories	26
3.2 An Optimal Control System	28
3.3 Interpolation	34
3.4 Dynamic Programming Application of a Rolling Horizon	34
3.5 Optimal Control Methods	35
3.6 Application of the Principles of Optimality	35
3.7 Summary and Conclusions	37
3.8 Combustion Problems	38
3.9 Properties	39
3.10 Auxiliary Results—Discrete Linear Programming	39
3.11 Type Hamilton-Jacobi-Bellman Equations	40
3.12 Continuous Linear Optimal Problems	40
3.13 Type Hamilton-Jacobi-Bellman Equations—Guide	40
3.14 Summary	41
3.15 Remarks	42
3.16 References	43
3.17 Problems	43
3.18 CONCLUSION	43

Contents**PART I: DESCRIBING THE SYSTEM AND EVALUATING ITS PERFORMANCE****1. Introduction**

1.1 Problem Formulation	3
1.2 State Variable Representation of Systems	16
1.3 Concluding Remarks	22
References	23
Problems	23

2. The Performance Measure

2.1 Performance Measures for Optimal Control Problems	29
2.2 Selecting a Performance Measure	34
2.3 Selection of a Performance Measure: The Carrier Landing of a Jet Aircraft	42
References	47
Problems	47

PART II: DYNAMIC PROGRAMMING**3. Dynamic Programming**

3.1 The Optimal Control Law	53
3.2 The Principle of Optimality	54

3.3 Application of the Principle of Optimality to Decision-Making 55
3.4 Dynamic Programming Applied to a Routing Problem 56
3.5 An Optimal Control System 58
3.6 Interpolation 64
3.7 A Recurrence Relation of Dynamic Programming 67
3.8 Computational Procedure for Solving Control Problems 70
3.9 Characteristics of Dynamic Programming Solution 75
3.10 Analytical Results—Discrete Linear Regulator Problems 78
3.11 The Hamilton-Jacobi-Bellman Equation 86
3.12 Continuous Linear Regulator Problems 90
3.13 The Hamilton-Jacobi-Bellman Equation—Some Observations 93
3.14 Summary 94
References 95
Problems 96

PART III: THE CALCULUS OF VARIATIONS AND PONTRYAGIN'S MINIMUM PRINCIPLE

4. *The Calculus of Variations*

4.1 Fundamental Concepts 108
4.2 Functionals of a Single Function 123
4.3 Functionals Involving Several Independent Functions 143
4.4 Piecewise-Smooth Extremals 154
4.5 Constrained Extrema 161
4.6 Summary 177
References 178
Problems 178

5. *The Variational Approach to Optimal Control Problems*

5.1 Necessary Conditions for Optimal Control 184
5.2 Linear Regulator Problems 209
5.3 Pontryagin's Minimum Principle and State Inequality Constraints 227
5.4 Minimum-Time Problems 240
5.5 Minimum Control-Effort Problems 259
5.6 Singular Intervals in Optimal Control Problems 291
5.7 Summary and Conclusions 308
References 309
Problems 310

**PART IV: ITERATIVE NUMERICAL TECHNIQUES FOR FINDING
OPTIMAL CONTROLS AND TRAJECTORIES**

6. Numerical Determination of Optimal Trajectories	329
6.1 Two-Point Boundary-Value Problems	330
6.2 The Method of Steepest Descent	331
6.3 Variation of Extremals	343
6.4 Quasilinearization	357
6.5 Summary of Iterative Techniques for Solving Two-Point Boundary-Value Problems	371
6.6 Gradient Projection	373
References	408
Problems	409

PART V: CONCLUSION

7. Summation	417
7.1 The Relationship Between Dynamic Programming and the Minimum Principle	417
7.2 Summary	423
7.3 Controller Design	425
7.4 Conclusion	427
References	427

APPENDICES **429**

1. Useful Matrix Properties and Definitions	429
2. Difference Equation Representation of Linear Sampled-Data Systems	432
3. Special Types of Euler Equations	434
4. Answers to Selected Problems	437

Index **443**