Contents

Edit	or biog	raphies	XV
Sect	ion aut	hors	xvi
1	Intro	duction and overview	1-1
1.1	Visualizing biological molecules to understand life's principles		
	1.1.1	A brief historical perspective on scattering-based structural biology methods	1-1
	1.1.2	Unique capabilities of cryo-EM: polymers and viruses	1-3
	1.1.3	Unique capabilities of cryo-EM: integral membrane proteins	1-4
	1.1.4	Unique capabilities of cryo-EM: large assemblies	1-5
	1.1.5	Unique capabilities of cryo-EM: scarce samples	1-5
	1.1.6	Unique capabilities of cryo-EM: compositionally heterogeneous samples	1-6
	1.1.7	Unique capabilities of cryo-EM: conformationally complex samples	1-7
	1.1.8	Current limits of cryo-EM and things yet to come	1-8
1.2	Recovery of 3D structures from images of weak-phase objects		1-9
	1.2.1	The signal that we care about is attributed to elastic scattering of electrons	1-10
	1.2.2	The electron accumulates information as it passes through a specimen	1-10
	1.2.3	The image wave function, and thus the image intensity, suffers from imperfections in the microscope optics	1-12
	1.2.4	Intermediate summary: the image intensity is linear in the projected Coulomb potential of the object	1-14
	1.2.5	Structure-factor phases, as well as amplitudes, are retained in the computed Fourier transforms of image intensities	1-15
	1.2.6	The projection theorem: the Fourier transform of an image corresponds to a 2D 'central' section within the 3D Fourier transform of the object	1-17
	1.2.7	The 3D object can be reconstructed from multiple projections	1-18
	1.2.8	Similarities and differences between sub-tomogram averaging and single-particle cryo-EM	1-19
	References		1-20

2	Sam	ple preparation	2-1
2.1	Over	view	2-1
2.2	Initial screening of samples in negative stain		
	2.2.1	Introduction	2-2
	2.2.2	Negative staining for TEM	2-2
	2.2.3	Purpose of negative staining when starting a project	2-3
	2.2.4	Techniques for the preparation of negatively stained samples	2-4
	2.2.5	Use of data processing to provide feedback to optimize samples for cryo-EM	2-10
2.3	Standard method of making grids for cryo-EM		
	2.3.1	Grids and support films	2-14
	2.3.2	Plasma cleaning or 'glow discharging' grids	2-15
1	2.3.3	Types of apparatus used for plunge freezing	2-17
	2.3.4	Blotting and plunging the grid using plunge freezers	2-18
	2.3.5	Common issues faced in making grids for cryo-EM imaging	2-19
2.4	Requirement to make very thin specimens for cryo-EM		
	2.4.1	Inelastic electron scattering causes the image quality to deteriorate with increasing sample thickness values	2-20
	2.4.2	The projection approximation may fail if the sample is too thick	2-21
	2.4.3	Areas of a grid where the sample is obviously too thick can, and should be, avoided during data collection	2-21
	2.4.4	Areas where the sample is much too thin, perhaps even air-dried, can sometimes be avoided just on the basis of their subjective appearance	2-23
2.5	Current strategies for optimizing preparation of cryo-grids		2-25
	2.5.1	Behavior of particles in the thin film environment	2-25
	2.5.2	Approaches to alter particle behavior in the thin film	2-28
		New technologies for sample preparation	2-32
	References		
3	Data	collection	3-1
3.1	Overview		3-1
3.2	Radiation damage in cryo-EM		3-2
	3.2.1	Introduction	3-2
	3.2.2	Interaction cross sections, elastic, and inelastic interactions	3-2
	3.2.3	Cryoprotection and primary, secondary, and tertiary radiation damage	3-3

	3.2.4	Radiation damage dependence on electron energy	3-4
	3.2.5	Practical implications of radiation damage: image averaging in cryo-EM	3-5
	3.2.6	Resolution dependence and exposure weighting	3-6
	3.2.7	Radiation damage versus beam-induced motion and charging	3-9
3.3	Low-	dose protocols for recording images	3-10
	3.3.1	Automated low-dose imaging	3-10
	3.3.2	Improving throughput	3-13
	3.3.3	Electron exposure levels used during high-resolution data collection	3-15
3.4		cal considerations: defocus, stigmation, coma-free illumination, hase plates	3-15
	3.4.1	Why do we need to defocus the microscope?	3-15
	3.4.2	Effects of defocus on the image and its information content	3-16
	3.4.3	Defocus variation is necessary to obtain uniform information coverage in reciprocal space	3-17
	3.4.4	Optical correction of astigmatism and coma aberrations	3-19
	3.4.5	Use of phase plates to improve image contrast and the expected benefits	3-20
3.5	Practical considerations: movie-mode data acquisition		
	3.5.1	Magnification and resolution	3-24
	3.5.2	Dose rate	3-25
	3.5.3	Strategies for motion correction	3-26
	3.5.4	Total dose or exposure time	3-29
	3.5.5	File size of movie datasets	3-29
	3.5.6	Summary	3-29
	Refere	ences	3-30
4	Data	processing	4-1
4.1	Overv	iew	4-1
4.2	Auton	nated extraction of particles	4-2
	4.2.1	From micrographs to particles	4-2
	4.2.2	Manual selection	4-3
	4.2.3	Unbiased automated approaches	4-4
	4.2.4	Particle extraction	4-8
	4.2.5	Cleaning up the results through classification	4-9
4.3	CTF 6	estimation and image correction (restoration)	4-10
	431	CTF estimation	4-13

Single-particle Cryo-EM of Biological Macromolecules

	4.3.2	Image correction	4-16
	4.3.3	Magnification distortion	4-18
	4.3.4	Concluding remarks	4-20
4.4	Merging data from structurally homogeneous subsets		
	4.4.1	How many particle images are needed for a 3D reconstruction?	4-21
	4.4.2	Obtaining a 3D reconstruction	4-28
	Ackn	owledgments	4-37
4.5	3D cl	assification of structurally heterogeneous particles	4-37
	4.5.1	Introduction	4-37
	4.5.2	Global 3D classification	4-38
	4.5.3	Masked 3D classification	4-40
	4.5.4	3D classification of particles with pseudo-symmetry	4-43
	4.5.5	Dealing with continuous motions	4-44
	4.5.6	Conclusion	4-45
4.6	Preferred orientation: how to recognize and deal with adverse effects		
	4.6.1	Protein interaction with the air-water interface	4-46
	4.6.2	Preferred orientation and its effects in cryo-EM	4-47
	4.6.3	Quantifying preferred orientation and its effects on cryo-EM reconstructions	4-50
	4.6.4	Overcoming the effects of preferred orientation	4-53
	4.6.5	Areas of research	4-57
	Ackn	owledgments	4-59
4.7	B factors and map sharpening		4-59
	4.7.1	An ideal 3D reconstruction has a predictable radial amplitude spectrum	4-59
	4.7.2	Actual 3D reconstructions feature dampened amplitudes at high frequencies	4-59
	4.7.3	Several factors contribute to signal decay at high frequencies	4-62
	4.7.4	Gaussian falloff, parametrized by a B factor, is a useful model of signal loss	4-62
	4.7.5	Estimating B factors	4-63
	4.7.6	Sharpening a map	4-64
	4.7.7	A single inverse Gaussian filter using a global B factor does not always lead to the optimal map	4-65
4.8	Optical aberrations and Ewald sphere curvature		
	4.8.1	Further considerations on the aberration function $\gamma(\overline{s})$	4-68
	4.8.2	Common types of aberrations	4-70
	4.8.3	Practical considerations for aberration correction	4-72

Single-particle Cryo-EM of Biological Macromolecules

	4.8.4	Thick objects and the Ewald sphere	4-76
	4.8.5	Ewald sphere correction	4-77
	Refer	ences	4-80
5	Map	validation	5-1
5.1	Overv	view	5-1
5.2	Measures of resolution: FSC and local resolution		
	5.2.1	The 'gold-standard' FSC	5-5
	5.2.2	Resolution thresholds	5-5
	5.2.3	FSC artifacts due to masking, filtration, and CTF	5-6
	5.2.4	Local resolution	5-8
	5.2.5	Resolution anisotropy	5-10
5.3	Recog	gnizing the effect of bias and over-fitting	5-10
	5.3.1	Introduction and nature of the problem arising from iterative refinement	5-10
	5.3.2	Assessing the consistency of maps with projection data	5-12
	5.3.3	Detecting over-fitting at high resolution in maps and effect on the FSC	5-15
	5.3.4	Local over-fitting	5-18
	5.3.5	Conclusion	5-21
5.4	Estimates of alignment accuracy		5-21
	5.4.1	Correlation and the signal-to-noise ratio (SNR)	5-22
	5.4.2	Analysis of alignment accuracy with synthetic data	5-23
	5.4.3	The relationship between alignment accuracy and resolution	5-25
	5.4.4	Estimating alignment accuracy from tilt pairs	5-27
	5.4.5	Estimating alignment accuracy from the reconstructed map	5-27
	5.4.6	Estimating alignment accuracy from projection-matching results	5-28
5.5	Discussion		5-28
	Acknowledgements		5-29
	Refere	ences	5-29
6	Mode	el building and validation	6-1
6.1	Overv	iew	6-1
6.2	Using	known components or homologs: model building	6-2
	6.2.1	Identifying known/modeled structures of individual subunits	6-3
	6.2.2	Rigid-body fitting	6-4
	622	Flexible fitting	6-4

Single-particle Cryo-EM of Biological Macromolecules

6.3	Building atomistic models in cryo-EM density maps		6-0
	6.3.1	Introduction	6-0
	6.3.2	Building models into cryo-EM density maps	6-10
	6.3.3	Model refinement	6-1:
	6.3.4	Model validation	6-17
	6.3.5	Model uncertainty	6-20
	6.3.6	Model deposition	6-21
	6.3.7	Revisiting the cryo-EM model challenge	6-22
	6.3.8	Toward the future	6-22
	6.3.9	Conclusions	6-25
	Ackno	owledgments	6-25
6.4	Qualit	ry evaluation of cryo-EM map-derived models	6-26
	6.4.1	Introduction	6-26
	6.4.2	Map-model metrics	6-27
	6.4.3	Model-only metrics	6-37
	6.4.4	Summary and conclusions	6-39
	Ackno	owledgment	6-40
6.5			6-40
	cryo-microscopy		
	6.5.1	Introduction	6-40
	6.5.2	Map improvement	6-42
	6.5.3	Map interpretation and model building	6-45
	6.5.4	Model optimization	6-48
	6.5.5	Validation	6-50
	6.5.6	Validation-guided corrections	6-52
	6.5.7	Conclusions	6-54
	Ackno	wledgments	6-54
6.6	Archiving structures and data		6-55
	6.6.1	Introduction	6-55
	6.6.2	Single-particle cryo-EM structure deposition	6-56
	6.6.3	Preparing files for deposition	6-57
	6.6.4	Data validation	6-59
	6.6.5	Sample sequence and ligands	6-61
	6.6.6	Deposition using OneDep	6-61
	6.6.7	Post-deposition: what happens next?	6-64
	6.6.8	Accessing cryo-EM structure data	6-65
	6.6.9	Conclusions	6-66
	Acknow	wledgment	6-66
	References		6-66