Table of Contents

PR R R R B R RC R A R BB LB B B B B B A B BB O R I A A B B A BB B B O BB O B xv

grammers Can Have Nice Things...........coovviiiiiiiiiiniiiernnnees 1
ders the Load for You 2
amming Is Tamed 3

st I's Still Fast 4
Collaboration Easier 4

& 6
:!l 8
nd Running Unit Tests 10
ommand-Line Arguments 11

s to the Web 15

y 22
Mandelbrot Set Actually Is 23

air Command-Line Arguments 28
from Pixels to Complex Numbers 30

g the Set 32
 Image Files 33
urrent Mandelbrot Program 35
ing the Mandelbrot Plotter 40
& 4]
42

43

45

46

U R R R R PO 49

Fixed-Width Numeric Types 52
Integer Types 53
Checked, Wrapping, Saturating, and Overflowing Arithmetic 56
Floating-Point Types 58

The bool Type 61

Characters 61

Tuples 63

Pointer Types 65
References 65
Boxes 66
Raw Pointers 66

Arrays, Vectors, and Slices 67
Arrays 67
Vectors 68
Slices 71

String Types 73
String Literals 73
Byte Strings 74
Strings in Memory 74
String 76
Using Strings "
Other String-Like Types 77

Type Aliases 78

Beyond the Basics 78

4. Ownershipand Moves.oovvviviiirniniennenn, FALAVRBRI G s il 79

Ownership 81

Moves 85
More Operations That Move 90
Moves and Control Flow 91
Moves and Indexed Content 92

Copy Types: The Exception to Moves 94

Rc and Arc: Shared Ownership 98

S TR BIRI L he o sasnesoneneonnonnssasSUOTTURERIEINERIE Sl abiv sl 101

References to Values 102

Working with References 105
Rust References Versus C++ References 105
Assigning References 107
References to References 107

Comparing References 108

References Are Never Null
Borrowing References to Arbitrary Expressions
References to Slices and Trait Objects
Reference Safety
Borrowing a Local Variable
Receiving References as Function Arguments
Passing References to Functions
Returning References
Structs Containing References
Distinct Lifetime Parameters
Omitting Lifetime Parameters
Sharing Versus Mutation
Taking Arms Against a Sea of Objects

ExpreSSionS| lllllllllllllllllll LU L I B B I B B I B B B B I B B B DN R BB B R BB BN B BN ANl

An Expression Language
Precedence and Associativity
Blocks and Semicolons
Declarations

if and match

if let

Loops

Control Flow in Loops
return Expressions

Why Rust Has loop

Function and Method Calls
Fields and Elements
Reference Operators
Arithmetic, Bitwise, Comparison, and Logical Operators
Assignment

Type Casts

Closures

Onward

E"orHandIing..l.l. llllll L B B B BB B B B B B B B BB BB BB BN B AR)

Panic
Unwinding
Aborting

Result
Catching Errors
Result Type Aliases
Printing Errors

LI LR B

109
109
110
110
110
113
115
116
117
120
121
123
130

133
133
134
137
138
140
142
142
144
145
146
148
149
151
151
152
153
154
154

157
157
158
159
160
160
162
163

Propagating Errors 164

Working with Multiple Error Types 166
Dealing with Errors That “Can’t Happen” 168
Ignoring Errors 169
Handling Errors in main() 169
Declaring a Custom Error Type 171
Why Results? 172
8 Craban andMatiles.ocininiannsnnsael panssvial pulsloua b, 173
Crates 173
Editions 176
Build Profiles 177
Modules 178
Nested Modules 179
Modules in Separate Files 180
Paths and Imports 183
The Standard Prelude 186
Making use Declarations pub 186
Making Struct Fields pub 186
Statics and Constants 187
Turning a Program into a Library 188
The src/bin Directory 189
Attributes 191
Tests and Documentation 193
Integration Tests 196
Documentation 197
Doc-Tests 199
Specifying Dependencies 202
Versions 202
Cargo.lock 204
Publishing Crates to crates.io 205
Workspaces 207
More Nice Things 208
95 SUUCKS, dusnbbbinnnivive s on o evunene senssmbanphbibahiensmssss SUUDART 10T 209
Named-Field Structs 209
Tuple-Like Structs 212
Unit-Like Structs 213
Struct Layout 213
Defining Methods with impl 214
Passing Self as a Box, Rc, or Arc 217

Type-Associated Functions 219

10.

{5 3

Associated Consts

Generic Structs

Structs with Lifetime Parameters
Deriving Common Traits for Struct Types

Interior Mutability

Enumsandpanernsl.'.l........llIl.‘..l‘l.l........l.l

Enums
Enums with Data

Enums in Memory
Rich Data Structures Using Enums
Generic Enums

Patterns
Literals, Variables, and Wildcards in Patterns

Tuple and Struct Patterns
Array and Slice Patterns
Reference Patterns

Match Guards

Matching Multiple Possibilities

Binding with @ Patterns

Where Patterns Are Allowed

Populating a Binary Tree
The Big Picture
- SRR T SRR
Using Traits

Trait Objects

Generic Functions and Type Parameters
Which to Use
Defining and Implementing Traits
Default Methods
Traits and Other People’s Types
Self in Traits
Subtraits
Type-Associated Functions
Fully Qualified Method Calls
Traits That Define Relationships Between Types
Associated Types (or How Iterators Work)

Generic Traits (or How Operator Overloading Works)

impl Trait
Associated Consts
Reverse-Engineering Bounds

L I B B BB BB B B B

220
221
223
224
225

229
230
232
233
234
236
239
242
243
244
245
247
248
248
249
250
252

253
255
256
258
261
264
265
266
268
269
270
271
273
273
277
278
280
281

12.

13.

14,

15.

Traits as a Foundation

DO ORI . - &6 . & doovnnaiils « o o clRBROERSOASL MRtibolh] dbidus sionn

Arithmetic and Bitwise Operators
Unary Operators
Binary Operators
Compound Assignment Operators
Equivalence Comparisons
Ordered Comparisons
Index and IndexMut
Other Operators

O SNSRI S R (A SRR SRR Y

Drop

Sized

Clone

Copy

Deref and DerefMut
Default

AsRef and AsMut
Borrow and BorrowMut
From and Into

TryFrom and Trylnto
ToOwned

Borrow and ToOwned at Work: The Humble Cow

L T R R T A RSSO ILi

Capturing Variables
Closures That Borrow
Closures That Steal

Function and Closure Types

Closure Performance

Closures and Safety
Closures That Kill
FnOnce
FnMut
Copy and Clone for Closures

Callbacks

Using Closures Effectively

Iterators...... N N e B SR O ST e oo

The Iterator and Intolterator Traits

284

285
286
289
290
291
292
295
298
300

301
302
305
308
309
310
313
315
316
318
321
322
323

K 7

327
328
328
330
332
333
334
334
336
338
339
343

345
347

Creating Iterators 348

iter and iter_mut Methods 348
Intolterator Implementations 349
from_fn and successors 351
drain Methods 353
Other Iterator Sources 354
Iterator Adapters 356
map and filter 356
filter_map and flat_map 359
flatten 361
take and take_while 363
skip and skip_while 363
peekable 364
fuse 365
Reversible Iterators and rev 366
inspect 367
chain 368
enumerate 369
zZip 370
by_ref 370
cloned, copied 371
cycle 372
Consuming Iterators 373
Simple Accumulation: count, sum, product 373
max, min 374
max_by, min_by 374
max_by_key, min_by_key 375
Comparing Item Sequences 375
any and all 376
position, rposition, and ExactSizelterator 376
fold and rfold 377
try_fold and try_rfold 378
nth, nth_back 379
last 380
find, rfind, and find_map 380
Building Collections: collect and FromIterator 381
The Extend Trait 383
partition 383
for_each and try_for_each 384

Implementing Your Own Iterators 385

TR R & i LTI 4 s s s ewuninns DI RPN PNRPRURARED APORPAN » ») ¢ 10510, A

17.

Overview
Vec<T>
Accessing Elements
Iteration
Growing and Shrinking Vectors
Joining
Splitting
Swapping
Sorting and Searching
Comparing Slices
Random Elements
Rust Rules Out Invalidation Errors
VecDeque<T>
BinaryHeap<T>
HashMap<K, V> and BTreeMap<K, V>
Entries
Map Iteration
HashSet<T> and BTreeSet<T>
Set Iteration
When Equal Values Are Different
Whole-Set Operations
Hashing
Using a Custom Hashing Algorithm
Beyond the Standard Collections

SUNMGS I TN bbiietea covsvvdicviddovedinsvvodd ;

Some Unicode Background
ASCII, Latin-1, and Unicode
UTF-8
Text Directionality

Characters (char)

Classifying Characters

Handling Digits

Case Conversion for Characters
Conversions to and from Integers

String and str
Creating String Values
Simple Inspection
Appending and Inserting Text
Removing and Replacing Text

Conventions for Searching and Iterating

392
393
394
396
396
400
400
403
404
406
406
407
408
410
411
415
417
418
419
420
420
422
423
424

427
428
428
428
430
430
431
432
433
434
434
435
436
437
438
439

Patterns for Searching Text

Searching and Replacing

Iterating over Text

Trimming

Case Conversion for Strings

Parsing Other Types from Strings

Converting Other Types to Strings

Borrowing as Other Text-Like Types

Accessing Text as UTF-8

Producing Text from UTF-8 Data

Putting Off Allocation

Strings as Generic Collections
Formatting Values

Formatting Text Values

Formatting Numbers

Formatting Other Types

Formatting Values for Debugging

Formatting Pointers for Debugging

Referring to Arguments by Index or Name

Dynamic Widths and Precisions

Formatting Your Own Types

Using the Formatting Language in Your Own Code
Regular Expressions

Basic Regex Use

Building Regex Values Lazily
Normalization

Normalization Forms

The unicode-normalization Crate

e s s 0 0 s 00 0 54 0 6 0 0 wlbs denid oo dan il dolaa d 0L

Readers and Writers

Readers

Buffered Readers

Reading Lines

Collecting Lines

Writers

Files

Seeking

Other Reader and Writer Types

Binary Data, Compression, and Serialization
Files and Directories

OsStr and Path

440
44]
442
HhE
445
445
446
447
447
448
449
451
451
453
454
456
456
458
458
459
460
462
463
464
465
466
467
468

471
472
473
475
477
479
480
481
482
483
485
486
486

Path and PathBuf Methods 488

Filesystem Access Functions 490
Reading Directories 491
Platform-Specific Features 493
Networking 494
TR ROREIEIINGE. . o4 ossnssonnioninsnssoreddiiEdd i avae i8I0 pady weaon 97
Fork-Join Parallelism 499
spawn and join 500
Error Handling Across Threads 502
Sharing Immutable Data Across Threads 503
Rayon 505
Revisiting the Mandelbrot Set 508
Channels 510
Sending Values 511
Receiving Values 514
Running the Pipeline 515
Channel Features and Performance 517
Thread Safety: Send and Sync 519
Piping Almost Any Iterator to a Channel 521
Beyond Pipelines 523
Shared Mutable State 523
What Is a Mutex? 524
Mutex<T> 526
mut and Mutex 527
Why Mutexes Are Not Always a Good Idea 528
Deadlock 529
Poisoned Mutexes 529
Multiconsumer Channels Using Mutexes 530
Read/Write Locks (RwLock<T>) 531
Condition Variables (Condvar) 532
Atomics 533
Global Variables 535
What Hacking Concurrent Code in Rust Is Like 538
p o BT T e R U S R G R e 0 T 539
From Synchronous to Asynchronous 541
Futures 542
Async Functions and Await Expressions 544
Calling Async Functions from Synchronous Code: block_on 547
Spawning Async Tasks 550

Async Blocks 554

1.

Building Async Functions from Async Blocks
Spawning Async Tasks on a Thread Pool
But Does Your Future Implement Send?
Long Running Computations: yield_now and spawn_blocking
Comparing Asynchronous Designs
A Real Asynchronous HTTP Client

An Asynchronous Client and Server
Error and Result Types
The Protocol
Taking User Input: Asynchronous Streams
Sending Packets
Receiving Packets: More Asynchronous Streams
The Client’s Main Function
The Server’s Main Function
Handling Chat Connections: Async Mutexes
The Group Table: Synchronous Mutexes
Chat Groups: tokios Broadcast Channels

Primitive Futures and Executors: When Is a Future Worth Polling Again?

Invoking Wakers: spawn_blocking
Implementing block_on

Pinning
The Two Life Stages of a Future
Pinned Pointers
The Unpin Trait

When Is Asynchronous Code Helpful?

Macro Basics
Basics of Macro Expansion
Unintended Consequences
Repetition
Built-In Macros
Debugging Macros
Building the json! Macro
Fragment Types
Recursion in Macros
Using Traits with Macros
Scoping and Hygiene
Importing and Exporting Macros
Avoiding Syntax Errors During Matching
Beyond macro_rules!

LRI B B B I B B

556
po7
558
561
562
563
564
566
567
568
570
571
373
574
575
578
579
582
584
586
588
588
592
594
595

599
600
601
603
605
607
609
610
611
615
615
617
620
622
623

p T R RSSO st {1 oYL RS (e TV 4 TaTt s QRRRETE MR B8 P s 625

Unsafe from What? 626
Unsafe Blocks 628
Example: An Efficient ASCII String Type 629
Unsafe Functions 631
Unsafe Block or Unsafe Function? 633
Undefined Behavior 634
Unsafe Traits 636
Raw Pointers 638
Dereferencing Raw Pointers Safely 641
Example: RefWithFlag 642
Nullable Pointers 644
Type Sizes and Alignments 645
Pointer Arithmetic 645
Moving into and out of Memory 647
Example: GapBuffer 651
Panic Safety in Unsafe Code 657
Reinterpreting Memory with Unions 658
Matching Unions 661
Borrowing Unions 661
A TS PRI 0. oo o s s v asnnnanuseesssdlibiiinh BN EVREIS Ve 0V FOK 663
Finding Common Data Representations 664
Declaring Foreign Functions and Variables 668
Using Functions from Libraries 669
A Raw Interface to libgit2 673
A Safe Interface to libgit2 679
Conclusion 690

