
Sub-Riemannian geometry is the geometry of a world with nonholonomic constraints. In such a world, one can move, send and receive information only in certain admissible directions but eventually one can reach every position from any other.

In the last two decades sub-Riemannian geometry has emerged as an independent research domain impacting on several areas of pure and applied mathematics, with applications to many areas such as quantum control, Hamiltonian dynamics, robotics and PDEs.

This comprehensive introduction proceeds from classical topics to cutting-edge theory and applications, assuming only a standard knowledge of calculus, linear algebra and differential equations. The book may serve as a basis for an introductory course in Riemannian geometry or an advanced course in sub-Riemannian geometry, covering elements of Hamiltonian dynamics, integrable systems and Lie theory. It will also be a valuable reference source for researchers in various disciplines.

Cambridge Studies in Advanced Mathematics

EDITORIAL BOARD
Béla Bollobás University of Memphis
William Fulton University of Michigan
Frances Kirwan University of Oxford
Peter Sarnak Princeton University
Barry Simon California Institute of Technology
Burt Totaro University of California, Los Angeles

	Preface	page xvii
Intr	oduction	1
1	Geometry of Surfaces in \mathbb{R}^3	11
1.1	Geodesics and Optimality	11
	1.1.1 Existence and Minimizing Properties of Geodesics	16
	1.1.2 Absolutely Continuous Curves	18
1.2	Parallel Transport	19
	1.2.1 Parallel Transport and the Levi-Civita Connection	20
1.3	Gauss-Bonnet Theorems	23
	1.3.1 Gauss–Bonnet Theorem: Local Version	23
	1.3.2 Gauss-Bonnet Theorem: Global Version	27
	1.3.3 Consequences of the Gauss–Bonnet Theorems	31
	1.3.4 The Gauss Map	33
1.4	Surfaces in \mathbb{R}^3 with the Minkowski Inner Product	36
1.5	Model Spaces of Constant Curvature	40
	1.5.1 Zero Curvature: The Euclidean Plane	40
	1.5.2 Positive Curvature: The Sphere	41
	1.5.3 Negative Curvature: The Hyperbolic Plane	43
1.6	Bibliographical Note	44
2	Vector Fields	45
2.1	Differential Equations on Smooth Manifolds	45
	2.1.1 Tangent Vectors and Vector Fields	45
	2.1.2 Flow of a Vector Field	47
	2.1.3 Vector Fields as Operators on Functions	48
	2.1.4 Nonautonomous Vector Fields	49
2.2	Differential of a Smooth Map	51
2.3	Lie Brackets	53

2.4		ius' Theorem	57
2.5		An Application of Frobenius' Theorem	59
2.5		ent Space	60
2.6		Bundles	62 64
2.7		rsions and Level Sets of Smooth Maps	66
2.8		graphical Note	
3		iemannian Structures	67
3.1	Basic I	Definitions	67
	3.1.1	The Minimal Control and the Length of an Admissible	
		Curve	71
	3.1.2		74
	3.1.3	Examples	76
	3.1.4		
		Free Sub-Riemannian Structure	77
3.2	Sub-Ri	iemannian Distance and Rashevskii-Chow/Theorem	80
	3.2.1	Proof of the Rashevskii–Chow Theorem	81
	3.2.2	Non-Bracket-Generating Structures	86
3.3	Exister	nce of Length-Minimizers	87
	3.3.1	On the Completeness of the Sub-Riemannian Distance	89
16	3.3.2	Lipschitz Curves with respect to d vs. Admissible Curves	91
	3.3.3	Lipschitz Equivalence of Sub-Riemannian Distances	93
	3.3.4	Continuity of d with respect to the	
		Sub-Riemannian Structure	94
3.4	Pontry	ragin Extremals	97
	3.4.1	The Energy Functional	99
	3.4.2		100
3.5	Appen	dix: Measurability of the Minimal Control	104
	3.5.1	A Measurability Lemma	104
	3.5.2	Proof of Lemma 3.12	106
3.6	Appen	dix: Lipschitz vs. Absolutely Continuous Admissible	
	Curve	S Such leading mouths	106
3.7	Biblio	graphical Note	108
4	Pontr	yagin Extremals: Characterization and Local	
	Minin	nality	109
4.1	Geom	etric Characterization of Pontryagin Extremals	109
	4.1.1	Lifting a Vector Field from M to T^*M	110
	4.1.2	The Poisson Bracket	111
	4.1.3	Hamiltonian Vector Fields	114

. ...

4.2	The Symplectic Structure	116
	4.2.1 Symplectic Form vs. Poisson Bracket	117
4.3	Characterization of Normal and Abnormal Pontryagin Extremals	119
	4.3.1 Normal Extremals	120
	4.3.2 Abnormal Extremals	124
	4.3.3 Codimension-1 and Contact Distributions	126
4.4	Examples	127
	4.4.1 2D Riemannian Geometry	128
	4.4.2 Isoperimetric Problem	130
	4.4.3 Heisenberg Group	134
4.5	Lie Derivative	136
4.6	Symplectic Manifolds	138
4.7	Local Minimality of Normal Extremal Trajectories	.140
	4.7.1 The Poincaré–Cartan 1-Form	140
	4.7.2 Normal Pontryagin Extremal Trajectories are Geodesics	142
4.8	Bibliographical Note	148
5	First Integrals and Integrable Systems	149
5.1	Reduction of Hamiltonian Systems with Symmetries	149
0.1	5.1.1 An Example of Symplectic Reduction: the Space	117
	of Affine Lines in \mathbb{R}^n	152
5.2	Riemannian Geodesic Flow on Hypersurfaces	153
	5.2.1 Geodesics on Hypersurfaces	153
	5.2.2 Riemannian Geodesic Flow and Symplectic Reduction	154
5.3	Sub-Riemannian Structures with Symmetries	157
5.4	Completely Integrable Systems	159
5.5	Arnold-Liouville Theorem	163
5.6	Geodesic Flows on Quadrics	166
5.7	Bibliographical Note	170
,	1000 1000 1000 1000 1000 1000 1000 100	
6	Chronological Calculus	171
6.1	Motivation	171
6.2	Duality	172
()	6.2.1 On the Notation	174
6.3	Topology on the Set of Smooth Functions	174
(1	6.3.1 Family of Functionals and Operators	175
6.4	Operator ODEs and Volterra Expansion	176
	6.4.1 Volterra Expansion	177
65	6.4.2 Adjoint Representation	180
6.5	Variation Formulas	182

6.6	Appen	dix: Estimates and Volterra Expansion	183
6.7		dix: Remainder Term of the Volterra Expansion	187
6.8		graphical Note	190
7	Lie G	roups and Left-Invariant	
2011		tiemannian Structures	191
7.1		oups of Diff(M) Generated by a Finite-Dimensional Lie	
		ra of Vector Fields	191
	7.1.1	A Finite-Dimensional Approximation	193
	7.1.2	Passage to Infinite Dimension	196
	7.1.3	Proof of Proposition 7.2	197
7.2		roups and Lie Algebras	198
	7.2.1	Lie Groups as Groups of Diffeomorphisms	200
	7.2.2	Matrix Lie Groups and Matrix Notation	202
	7.2.3	Bi-Invariant Pseudo-Metrics and Haar Measures	205
	7.2.4	The Levi–Malcev Decomposition	207
7.3	Trivial	lization of TG and T^*G	208
7.4	Left-In	nvariant Sub-Riemannian Structures	209
7.5	Examp	ple: Carnot Groups of Step 2	210
	7.5.1	Normal Pontryagin Extremals for Carnot Groups	
		of Step 2	213
7.6	Left-In	nvariant Hamiltonian Systems on Lie Groups	216
	7.6.1	Vertical Coordinates in TG and T^*G	216
	7.6.2	Left-Invariant Hamiltonians	218
7.7	Norma	al Extremals for Left-Invariant Sub-Riemannian Structures	221
	7.7.1	Explicit Expression for Normal Pontryagin	
		Extremals in the $\mathbf{d} \oplus \mathbf{s}$ Case	221
	7.7.2	Example: The $\mathbf{d} \oplus \mathbf{s}$ Problem on $SO(3)$	223
	7.7.3	Further Comments on the $\mathbf{d} \oplus \mathbf{s}$ Problem:	
		$SO(3)$ and $SO_+(2,1)$	225
	7.7.4	Explicit Expression for Normal Pontryagin	
		Extremals in the $\mathbf{k} \oplus \mathbf{z}$ Case	228
7.8	Rollin	g Spheres management and the second s	232
	7.8.1	Rolling with Spinning	232
	7.8.2	Rolling without Spinning	235
	7.8.3	Euler's "Curvae Elasticae"	240
	7.8.4	Rolling Spheres: Further Comments	243
7.9	Biblio	ographical Note	244
8	Endp	oint Map and Exponential Map	246
8.1	The E	Indpoint Map	247
	8.1.1	Regularity of the Endpoint Map: Proof of Proposition 8.5	248

8.2	Lagrange Multiplier Rule	251
8.3	Pontryagin Extremals via Lagrange Multipliers	251
8.4	Critical Points and Second-Order Conditions	253
	8.4.1 The Manifold of Lagrange Multipliers	256
8.5	Sub-Riemannian Case	261
8.6	Exponential Map and Gauss' lemma	266
8.7	Conjugate Points	270
8.8	Minimizing Properties of Extremal Trajectories	274
	8.8.1 Local Length-Minimality in the $W^{1,2}$ Topology.	
	Proof of Theorem 8.52	275
	8.8.2 Local Length-Minimality in the C^0 Topology	278
8.9	Compactness of Length-Minimizers	283
8.10	Cut Locus and Global Length-Minimizers	285
8.11	An Example: First Conjugate Locus on a Perturbed Sphere	290
8.12	Bibliographical Note	293
0	2D Almond Pinnon in Standard and Indicates added	205
9	2D Almost-Riemannian Structures	295
9.1	Basic Definitions and Properties	295
	9.1.1 How Large is the Singular Set?	301
	9.1.2 Genuinely 2D Almost-Riemannian Structures	202
	Always Have Infinite Area	303
0.0	9.1.3 Pontryagin Extremals	304
9.2	The Grushin Plane	306
0.0	9.2.1 Geodesics on the Grushin Plane	307
9.3	Riemannian, Grushin and Martinet Points	310
0.4	9.3.1 Normal Forms	313
9.4	Generic 2D Almost-Riemannian Structures	315
0.5	9.4.1 Proof of the Genericity Result	316
9.5	A Gauss–Bonnet Theorem	318
	9.5.1 Integration of the Curvature	318
	9.5.2 The Euler Number	319
	9.5.3 Gauss–Bonnet Theorem	320
	9.5.4 Every Compact Orientable 2D Manifold can be Endowed	
	with a Free Almost-Riemannian Structure with only	
	Riemannian and Grushin Points	328
9.6	Bibliographical Note	329
10	Nonholonomic Tangent Space	331
10.1	Flag of the Distribution and Carnot Groups	331
10.2	Jet Spaces	333
	10.2.1 Jets of Curves	333
	10.2.2 Jets of Vector Fields	336
10.3	Admissible Variations and Nonholonomic Tangent Space	338
	· ·	

	10.3.1 Admissible Variations	338
	10.3.2 Nonholonomic Tangent Space	340
10.4	Nonholonomic Tangent Space and Privileged Coordinates	343
	10.4.1 Privileged Coordinates	343
	10.4.2 Description of the Nonholonomic Tangent Space	
	in Privileged Coordinates	346
	10.4.3 Existence of Privileged Coordinates: Proof	
	of Theorem 10.32	354
	10.4.4 Nonholonomic Tangent Spaces in Low Dimension	358
10.5	Metric Meaning	361
	10.5.1 Convergence of the Sub-Riemannian Distance	
	and the Ball–Box Theorem	362
10.6	Algebraic Meaning	367
	10.6.1 Nonholonomic Tangent Space: The Equiregular Case	369
10.7	Carnot Groups: Normal Forms in Low Dimension	371
10.8	Bibliographical Note	375
11	Regularity of the Sub-Riemannian Distance	376
11.1	Regularity of the Sub-Riemannian Squared Distance	376
	Locally Lipschitz Functions and Maps	385
	11.2.1 Locally Lipschitz Map and Lipschitz Submanifolds	390
	11.2.2 A Non-Smooth Version of the Sard Lemma	393
11.3	Regularity of Sub-Riemannian Spheres	396
11.4	Geodesic Completeness and the Hopf–Rinow Theorem	399
	Bibliographical Note	400
12	Abnormal Extremals and Second Variation	402
12.1	Second Variation	402
	Abnormal Extremals and Regularity of the Distance	404
	Goh and Generalized Legendre Conditions	410
是其	12.3.1 Proof of Goh Condition – Part (i) of Theorem 12.12	413
	12.3.2 Proof of the Generalized Legendre Condition – Part (ii)	
	of Theorem 12.12	420
	12.3.3 More on the Goh and Generalized Legendre Conditions	422
12.4	Rank-2 Distributions and Nice Abnormal Extremals	424
12.5	Minimality of Nice Abnormal Extremals in Rank-2 Structures	427
	12.5.1 Proof of Theorem 12.33	429
12.6	Conjugate Points along Abnormals	436
	Conjugate 1 onto mong 1 tonorman	
	12.6.1 Abnormals in Dimension 3	439

Alust some to ent. 2.3.01

12.7	Equivalence of Local Minimality with Respect to the $W^{1,2}$ and	115
10.0	C^0 Topologies	445/
	Non-Minimality of Corners	449
12.9	Bibliographical Note	454
13	Some Model Spaces	456
13.1	Carnot Groups of Step 2	457
13.2	Multidimensional Heisenberg Groups	460
	13.2.1 Pontryagin Extremals in the Contact Case	461
	13.2.2 Optimal Synthesis	463
13.3	Free Carnot Groups of Step 2	466
	13.3.1 Intersection of the Cut Locus with the Vertical Subspace	470
	13.3.2 The Cut Locus for the Free Step-2 Carnot Group of	
	Rank 3	471
13.4	An Extended Hadamard Technique to Compute the Cut Locus	472
13.5	The Grushin Structure	478
	13.5.1 Optimal Synthesis Starting from a Riemannian Point	479
	13.5.2 Optimal Synthesis Starting from a Singular Point	482
13.6	The Standard Sub-Riemannian Structure on $SU(2)$	486
13.7	Optimal Synthesis on the Groups $SO(3)$ and $SO_{+}(2,1)$	490
13.8	Synthesis for the Group of Euclidean Transformations of the	
	Plane $SE(2)$	494
	13.8.1 Mechanical Interpretation	495
	13.8.2 Geodesics	496
13.9	The Martinet Flat Sub-Riemannian Structure	502
	13.9.1 Abnormal Extremals	503
	13.9.2 Normal Extremals	504
13.10) Bibliographical Note	509
14	Curves in the Lagrange Grassmannian	513
14.1	The Geometry of the Lagrange Grassmannian	513
	14.1.1 The Lagrange Grassmannian	517
14.2	Regular Curves in the Lagrange Grassmannian	519
14.3	Curvature of a Regular Curve	523
14.4	Reduction of Non-Regular Curves in Lagrange Grassmannian	527
14.5	Ample Curves	529
14.6	From Ample to Regular	530
14.7	Conjugate Points in $L(\Sigma)$	536
14.8	Comparison Theorems for Regular Curves	538
14.9	Bibliographical Note	540

15	Jacobi Curves	542
15.1	From Jacobi Fields to Jacobi Curves	542
	15.1.1 Jacobi Curves	543
15.2	Conjugate Points and Optimality	545
15.3	Reduction of the Jacobi Curves by Homogeneity	547
15.4	Bibliographical Note	550
16	Riemannian Curvature	551
16.1	Ehresmann Connection	551
	16.1.1 Curvature of an Ehresmann Connection	552
	16.1.2 Linear Ehresmann Connections	554
	16.1.3 Covariant Derivative and Torsion for Linear Connections	555
16.2	Riemannian Connection	557
16.3	Relation to Hamiltonian Curvature	563
16.4	Comparison Theorems for Conjugate Points	565
	Locally Flat Spaces	567
	Curvature of 2D Riemannian Manifolds	568
	Bibliographical Note	570
17	Curvature in 3D Contact Sub-Riemannian Geometry	571
17.1	A Worked-Out Example: The 2D Riemannian Case	571
17.2		576
17.3	Canonical Frames	579
17.4	Curvature of a 3D Contact Structure	582
	17.4.1 Geometric Interpretation	588
17.5	Local Classification of 3D Left-Invariant Structures	589
	17.5.1 A Description of the Classification	591
	17.5.2 A Sub-Riemannian Isometry Between	
	Non-Isomorphic Lie groups	594
	17.5.3 Canonical Frames and Classification.	2.1
	Proof of Theorem 17.29	596
	17.5.4 An Explicit Isometry. Proof of Theorem 17.32	599
17.6		604
17.7	Bibliographical Note	605
18	Integrability of the Sub-Riemannian Geodesic Flow on	
	3D Lie Groups	607
18.1	Poisson Manifolds and Symplectic Leaves	607
	18.1.1 Poisson Manifolds	607
	18.1.2 The Poisson Bi-Vector	608
	18.1.3 Symplectic Manifolds	609

	18.1.4 Casimir Functions	609
	18.1.5 Symplectic Leaves	611
18.2	Integrability of Hamiltonian Systems on Lie Groups	612
	18.2.1 The Poisson Manifold g*	612
	18.2.2 The Casimir First Integral	614
	18.2.3 First Integrals Associated with a	
	Right-Invariant Vector Field	615
	18.2.4 Complete Integrability on Lie Groups	615
18.3	Left-Invariant Hamiltonian Systems on 3D Lie Groups	616
	18.3.1 Rank-2 Sub-Riemannian Structures on 3D Lie Groups	621
	18.3.2 Classification of Symplectic Leaves on 3D Lie Groups	623
18.4	Bibliographical Note	632
19	Asymptotic Expansion of the 3D Contact	
	Exponential Map	633
19.1	The Exponential Map	633
	19.1.1 The Nilpotent Case	634
19.2	General Case: Second-Order Asymptotic Expansion	636
	19.2.1 Proof of Proposition 19.2: Second-Order Asymptotics	637
19.3	General Case: Higher-Order Asymptotic Expansion	641
	19.3.1 Proof of Theorem 19.6: Asymptotics	
	of the Exponential Map	643
	19.3.2 Asymptotics of the Conjugate Locus	648
	19.3.3 Asymptotics of the Conjugate Length	650
	19.3.4 Stability of the Conjugate Locus	651
19.4	Bibliographical Note	653
20	Volumes in Sub-Riemannian Geometry	654
20.1	Equiregular Sub-Riemannian Manifolds	654
20.2	The Popp Volume	655
20.3	A Formula for the Popp Volume in Terms of Adapted Frames	657
20.4	The Popp Volume and Smooth Isometries	661
20.5	Hausdorff Dimension and Hausdorff Volume	664
20.6	Hausdorff Volume on Sub-Riemannian Manifolds	664
	20.6.1 Hausdorff Dimension	665
	20.6.2 On the Metric Convergence	668
	20.6.3 Induced Volumes and Estimates	669
20.7	Density of the Spherical Hausdorff Volume with respect to a	
	Smooth Volume	671
20.8	Bibliographical Note	672

xvi Contents

of the Heat Kernel

The Heat Equation

21

21.1

A.2

A.3

The Sub-Riemannian Heat Equation

21.1.1 The Heat Equation in the Riemannian Contex

21.1.2 The Heat Equation in the Sub-Riemannian Co

21.1.3 The Hörmander Theorem and the Existence

		of the fiedt Reflict
	21.1.4	The Heat Equation in the Non-Bracket-Gener
21.2	The He	eat Kernel on the Heisenberg Group
	21.2.1	The Heisenberg Group as a Group of Matrice
	21.2.2	The Heat Equation on the Heisenberg Group
	21.2.3	Construction of the Gaveau-Hulanicki
		Fundamental Solution
	21.2.4	Small-Time Asymptotics for the Gaveau-Hula
		Fundamental Solution
21.3	Bibliog	graphical Note
Appendix Geometry of Parametrized Curves in Lagra		
	Grassi	mannians Igor Zelenko
A.1	Prelim	inaries

Algebraic Theory of Curves in Grassmannians and Fla

Application to the Differential Geometry of Monotoni

Parametrized Curves in Lagrangian Grassmannians

21	The Sub-Riemannian Heat Equation	674	
21.1	The Heat Equation	674	
	21.1.1 The Heat Equation in the Riemannian Context	674	
	21.1.2 The Heat Equation in the Sub-Riemannian Context	678	
	21.1.3 The Hörmander Theorem and the Existence		
	of the Heat Kernel	681	
	21.1.4 The Heat Equation in the Non-Bracket-Generating Case	683	
21.2	The Heat Kernel on the Heisenberg Group	684	
	21.2.1 The Heisenberg Group as a Group of Matrices	684	
	21.2.2 The Heat Equation on the Heisenberg Group	686	
	21.2.3 Construction of the Gaveau–Hulanicki		
	Fundamental Solution	687	
	21.2.4 Small-Time Asymptotics for the Gaveau–Hulanicki		
	Fundamental Solution	695	
21.3	Bibliographical Note	696	
Appe	endix Geometry of Parametrized Curves in Lagrangian		
	Grassmannians Igor Zelenko	698	
A.1	Preliminaries	698	
A.2	Algebraic Theory of Curves in Grassmannians and Flag Varieties 7		
A.3	Application to the Differential Geometry of Monotonic		
	Parametrized Curves in Lagrangian Grassmannians	715	
	References	725	
	Index	740	