Inhaltsverzeichnis.

Einleitung	1
1. Die Aufgabe der Festigkeitslehre S. 1. — 2. Beziehungen zur Mechanik S. 2. — 3. Technische Festigkeitslehre und mathematische Theorie der festen Körper S. 2. — 4. Über die Einteilung der Festigkeitslehre S. 3. — 5. Geschichtliche Anmerkung S. 4.	
I. Der Spannungszustand	5
6. Äußere und innere Kräfte. Definition der Spannung S. 5. — 7. Normal- und Schubspannungen S. 6. — 8. Der lineare (einachsige) Spannungszustand S. 7. — 9. Der ebene (zweiachsige) Spannungszustand S. 10. — 10. Hauptspannungen S. 12. — 11. Anwendungen S. 14. — 12. Hauptspannungslinien und Schubspannungslinien S. 16. — 13. Der dreiachsige (räumliche) Spannungszustand S. 18. — 14. Bemerkung über die Mohrsche Darstellung des dreiachsigen Spannungszustandes S. 20. — 15. Die Gleichgewichtsbedingungen für das Körperelement S. 21.	
II. Der Verzerrungszustand	24
16. Dehnung und Gleitung S. 24. — 17. Die Komponenten des Verzerrungstensors S. 25. — 18. Anwendungen S. 27. — 19. Raumdehnung S. 28. — 20. Die Verträglichkeitsbedingungen S. 28. — 21. Übergang zu den elastischen Gleichungen S. 29.	
III. Das Verhalten der festen Körper bei Belastungen	29
22. Vorbemerkung S. 29. — 23. Physikalische Kennzeichnung der Stoffe S. 30. — 24. Prüfung der Festigkeitseigenschaften S. 31. — 25. Der Stahlstab beim Zugversuch: Elastizität, Proportionalität S. 33. — 26. Querdehnung, Querzahl S. 34. — 27. Streckgrenze, Fließen, Verfestigung, Bruch S. 35. — 28. Physikalisches über Festigkeit und Bruch S. 38. — 29. Die Elastizitätsgrenze S. 39. — 30. Der Stahlstab beim Druckversuch S. 40. — 31. Verhalten anderer technisch wichtiger Stoffe. Einteilung S. 40. — 32. Härte S. 41. — 33. Wechselnde Belastung S. 42. — 34. Bruchhypothesen S. 47. — 35. Zulässige Spannungen; Sicherheit S. 50.	
IV. Die elastischen Gleichungen	50
36. Das Hookesche Gesetz für Schub; Gleitzahl S. 50. — 37. Die allgemeine Form des Hookeschen Gesetzes S. 52. — 38. Der ebene Spannungs- und Verzerrungszustand S. 53. — 39. Die Raumdehnung in Abhängigkeit von den Spannungen S. 55. — 40. Die Formänderungsarbeit S. 55. — 41. Die Gestaltänderungsarbeit S. 58.	
V. Zug und Druck	60
42. Zusammenstellung S. 60. — 43. Elementare Beispiele. Statischbestimmte Aufgaben S. 61. — 44. Berechnung auf Schwingungsfestigkeit S. 65. — 45. Verschiebungspläne S. 65. — 46. Statisch-unbestimmte Aufgaben. Methode der Formänderungen S. 67. — 47. Statisch-unbestimmte Fachwerke. Prinzip der virtuellen Arbeiten S. 69. — 48. Anwendungen S. 71. — 49. Nietverbindungen S. 73.	
VI. Flächenträgheitsmomente	75
50. Definitionen S. 75. — 51. Allgemeine Sätze für die Berechnung von Trägheitsmomenten S. 76. — 52. Hauptträgheitsachsen und Haupt-	

	trägheitsmomente S. 77. — 53. Trägheitskreise von Mohr und Land S. 78. — 54. Die Trägheitsellipse S. 80. — 55. Zeichnerische Verfahren zur Ermittlung von Trägheitsmomenten S. 81. — 56. Beispiele und Anwendungen S. 83.	80100
VII.	A. Allgemeines. — 57. Beziehung der Elastizitätstheorie zur technischen Biegelehre S. 86. — 58. Spannungsverteilung S. 87. — 59. Die Dimensionierung der geraden Träger in der technischen Biegelehre S. 90. — 60. Formänderung. Die Differentialgleichung der elastischen Linie S. 91. — 61. Bewegte Einzellasten S. 92. — 62. Die Formänderungsarbeit durch Biegemomente S. 95. B. Schiefe Biegung. — 63. Spannungsverteilung S. 95.	86
	C. Berechnung der Schubspannungen. — 64. Schubspannungen im querbelasteten Balken S. 99. — 65. Durchbiegung infolge der Schubspannungen S. 102.	
	D. Berechnung der Durchbiegungen. — 66. Methoden zur Bestimmung der Biegelinien S. 104. — 67. Biegelinien durch direkte Integration S. 104. — 68. Biegelinien nach Mohr S. 108. — 69. Die wichtigsten Sonderfälle S. 110. — 70. Zusammenstellung der Ersatzträger S. 113. — 71. Zeichnerische Ermittlung der Durchbiegung S. 114. — 72. Biegelinien durch Zusammensetzung von einfacheren Belastungsfällen S. 118. — 73. Statisch-unbestimmte Träger S. 119. — 74. Beispiele und Anwendungen S. 120. — 75. Einfache Rahmen S. 124. — 76. Beispiele zur Berechnung von Rahmen S. 124. — 77. Zusammenhang zwischen Biegemomenten und Drehwinkeln an den Auflagern eines in zwei Punkten a, b gestützten Balkens S. 127.	
VIII.	Verdrehung zylindrischer Stäbe	128
IX.	Zusammengesetzte Beanspruchungen	137
X.	Knickung gerader Stäbe	152
XI.	Die Arbeitssätze der Festigkeitslehre (Energiemethoden) 98. Der Satz vom Minimum der potentiellen Energie S. 167. — 99. Der Satz von der "Gegenseitigkeit der Verschiebungen" S. 168. — 100. Die Sätze Castiglianos S. 170. — 101. Anwendung auf statisch-unbestimmte Tragwerke S. 171. — 102. Zweite Form des Prinzips der kleinsten Formänderungsarbeit S. 173. — 103. Das Prinzip der kleinsten Formänderungsarbeit für Knickaufgaben S. 177.	167

Sachverzeichnis.