CONTENTS

Pre	face			xiii
1	Social Networks and Blockmodels			1
	1.1	An In	tuitive Statement of Network Ideas	3
		1.1.1	Fundamental Types of Social Relations	5
		1.1.2	Types of Relational Data Arrays	11
	1.2	Block	s as Parts of Networks	11
		1.2.1	Blocks	12
	1.3	Some	Block Types	14
	1.4	Speci	fying Blockmodels	16
		1.4.1	Parent-Child Role Systems	16
		1.4.2	Organizational Hierarchies	17
		1.4.3	Systems of Ranked Clusters	19
		1.4.4	Baboon Grooming Networks	20
	1.5	Conve	entional Blockmodeling	24
		1.5.1	Equivalence and Blockmodeling	24
	1.6	Gener	ralized Blockmodeling	25
	1.7	An O	utline Map of the Topics Considered	27
2	Network Data Sets			30
	2.1	Classi	ic Data Sets	30
		2.1.1	Sampson Monastery Data	31
		2.1.2	Bank Wiring Room Data	37
		2.1.3	Newcomb Fraternity Data	44
	2.2	Newe	er Data Sets	47
		2.2.1	Little League Baseball Teams	47
		2.2.2	Political Actor Network	50
		2.2.3	Student Government Data	52
		2.2.4	Kansas Search and Rescue Network	54
		2.2.5	A Bales-Type Group Dynamics Network	56

viii Contents

		2.2.6	Ragusan Families Marriage Networks	56
		2.2.7	Two Baboon Grooming Networks	60
	2.3	Data S	Set Properties	61
	2.4	Some	Additional Remarks Concerning Data	63
3	Mat	hematic	cal Prelude	64
	3.1	Basic	Set Theory	64
	3.2	Relati	ons	70
		3.2.1	Operations with Binary Relations	74
		3.2.2	Comparing Relations	76
		3.2.3	Special Operations	80
	3.3	Functi	ions	84
		3.3.1	Products of Functions ⊙	87
		3.3.2	Relational Homomorphisms	88
	3.4	Basic	Algebra ⊙	89
	3.5	Transi	itions to Chapters 4 and 9	93
4	Rela	itions a	nd Graphs for Network Analysis	94
	4.1	Graph	ns	94
		4.1.1	Examples of Graphs	104
		4.1.2	Traveling on a Graph	107
		4.1.3	Graph Coloring	111
	4.2	Types	of Binary Relations	112
		4.2.1	Properties of Relations	113
		4.2.2	Closures	114
		4.2.3	Computing the Transitive Closure ⊳	115
		4.2.4	Special Elements	116
		4.2.5	Tournaments ⊳	117
	4.3	Partiti	ions and Equivalence Relations	117
	4.4	Acycl	ic Relations	122
		4.4.1	Levels	123
	4.5	Order	S	124
		4.5.1	Factorization	125
		4.5.2	Hasse Diagram	126
		4.5.3	Numberings	127
	4.6	Netwo	orks	127
	4.7	Centr	ality in Networks	128
		4.7.1	Algorithmic Aspects	131
	4.8	Sumn	nary and Transition	131
5	Clus	stering.	Approaches	133
	5.1	An In	troduction to Cluster Analytic Ideas	133
	5.2	Usual	Clustering Problems	134
		5.2.1	An Example	135
		5.2.2	The Usual Steps of Solving Clustering Problems	137

Contents	ix
Comenis	174

	5.3	(Dis)s	similarities	137
		5.3.1	(Dis)similarity Measures for Numerical Data	138
		5.3.2	(Dis)similarity Measures for Binary Data	142
	5.4	Cluste	ering Algorithms	143
		5.4.1	The Hierarchical Approach	144
		5.4.2	The Leader Algorithm	149
-		5.4.3	The Relocation Algorithms	150
	5.5	Const	rained Clustering	150
		5.5.1	The Constrained Clustering Problem	151
			Solving Constrained Clustering Problems	154
		5.5.3	The Structure Enforcement Coefficient	156
		5.5.4	An Empirical Example	156
	5.6	Multio	criteria Clustering	160
		5.6.1	A Multicriteria Clustering Problem	160
		5.6.2	Solving Discrete Multicriteria Optimization Problems	161
		5.6.3	Direct Multicriteria Clustering Algorithms	161
		5.6.4	An Example	164
	5.7	Trans	ition to Blockmodeling	167
6	An (Optimiz	cational Approach to Conventional Blockmodeling	168
	6.1	Conve	entional Blockmodeling	168
		6.1.1	Definitions of Equivalences	170
		6.1.2	Equivalence and k-Partite Graphs	176
		6.1.3	Establishing Conventional Blockmodels	176
		6.1.4	The Indirect Blockmodeling Approach	177
		6.1.5	Measuring the Equivalence of Pairs	
			of Units	178
	6.2	Optim	nization and Blockmodeling	184
		6.2.1	The Direct Blockmodeling Approach	185
		6.2.2	A Criterion for Structural Equivalence	186
		6.2.3	A Criterion for Regular Equivalence	187
		6.2.4	A Clustering Algorithm	188
		6.2.5	Two Artificial Examples	188
	6.3	Repre	senting Partitions	192
	6.4	Some	Empirical Examples	196
		6.4.1	Two Little League Baseball Teams	196
		6.4.2	The Political Actor Example	201
	6.5	An Aı	nalysis of a Search and Rescue Operation	203
	6.6	Gener	alized Blockmodeling	209
7	Four	ndation	s for Generalized Blockmodeling	210
	7.1	Gener	ralization of Equivalences	211
		7.1.1	Some Properties of t'ie Predicates	213
		7.1.2	Examples	215

x Contents

	7.2	Gener	ralized Blockmodeling	220
		7.2.1	Blockmodels	220
		7.2.2	\mathcal{T} -Equivalence	222
		7.2.3	Optimization	223
	7.3	Two E	Examples of Generalized Blockmodeling	227
		7.3.1	An Artificial Network	227
		7.3.2	A Student Government Network	228
		7.3.3	Exploring Multiple Partitions	231
	7.4	Prespe	ecified Blockmodels	233
	7.5	Block	model Types	235
	7.6	Applie	cations of Prespecified Blockmodels	237
		7.6.1	Classroom Liking Ties for Boys and Girls	237
		7.6.2	Baboon Grooming Networks	238
		7.6.3	Multiple Blockmodels and Inconsistencies	243
	7.7	Some	Benefits of the Optimization Approach	245
	7.8	Exten	ding Generalized Blockmodeling	245
8	Bloc	kmode	ling Two-Mode Network Data	247
	8.1	Two-N	Mode Network Data	247
	8.2	Appro	oaches to Two-Mode Network Data	248
	8.3	Block	models for Two-Mode Network Data	249
	8.4	A For	malization of Blockmodeling Two-Mode Data	250
	8.5	Block	models with Empirical Data	251
		8.5.1	Supreme Court Voting	251
		8.5.2	The Southern Women Event Participation	
			Data	257
		8.5.3	Journal-to-Journal Citation Networks	265
	8.6	Summ	nary	270
9	Sem	irings a	and Lattices	271
	9.1	Walks	s, Paths, and Algebras	271
	9.2	Distri	butivity and Absorption	273
		9.2.1	Distributivity	274
		9.2.2	Absorption	274
	9.3	Value	d Graphs	274
		9.3.1	Assigning Values to Paths	275
		9.3.2	Assessing Paths in Terms of Their Values	276
	9.4	Semir	ings	279
		9.4.1	Some Social Network Applications of Semirings	282
	9.5	Semil	attices and Lattices as Relations	285
		9.5.1	Bounds	286
		9.5.2	Semilattices and Lattices	287
	9.6		oraic View on Lattices	290
		9.6.1		291
		9.6.2	3.1	293
	9.7	Concl	-	294

Contents	xi	

10	Balanc	e Theory and Blockmodeling Signed Networks	295
	10.1	Structural Balance Theory	296
	10.2	Signed Networks	297
	10.3	Partitioning Signed Networks and Semirings	299
		10.3.1 Examples	301
	10.4	A Partitioning Algorithm for Signed Networks	302
-	10.5	Exactly k-Balanced Structures	304
		10.5.1 An Empirical Example	306
	10.6	Structures That are Not k-Balanced	307
		10.6.1 A Constructed Example	307
		10.6.2 An Empirical Example	307
	10.7	Another Look at the Bank Wiring Room Data	310
	10.8	Balance and Imbalance in a Bales Group	312
	10.9	Through-Time Balance Processes	317
		10.9.1 The Sampson Data	318
		10.9.2 The Newcomb Data	320
	10.10	Blockmodeling and Signed Networks	324
11	Symm	etric-Acyclic Blockmodels	326
	11.1	Blocks for Directed Graphs and Acyclic Graphs	326
	11.2	Two Constructed Examples	327
	11.3	Establishing Symmetric-Acyclic Decompositions of	
		Networks	328
		11.3.1 Ideal Structures	328
		11.3.2 Relations without a Symmetric–Acyclic	
		Decomposition	331
	11.4		333
	11.5	The Student Government Example	337
		11.5.1 A Hypothesized Blockmodel	337
		11.5.2 A Second Hypothesized Blockmodel	338
	11.6	A Return to the Classroom Example	339
	11.7	Marriage Network of the Ragusan Noble Families	340
		11.7.1 Network Decomposition	341
		11.7.2 Blockmodeling Approach	344
	11.8	Discussion	346
12	Extend	ling Generalized Blockmodeling	347
	12.1	Block Types	347
	12.2	Block Types and Criterion Functions	348
	12.3	Using Substantive and Empirical Knowledge	349
		12.3.1 Prespecification	349
		12.3.2 Constraints	350
		12.3.3 Imposing Penalties	350
	12.4	The Magnitudes of Criterion Functions	350
	12.5	The Generalized Blockmodeling Framework	352
	12.6	Composition of Blocks	354

xii Contents

12.7	Multiple Fitted Blockmodels	355
12.8	Multiple Relations	356
12.9	Other Networks and Network Types	358
12.10	Network Size and Valued Graphs	360
Bibliograph	hy	363
Author Inde	375	
Subject Ind	378	