
contents
preface xix
acknowledgments xxiii
about this book xxv
about the author xxix
about the cover illustrator xxxi

P a r t 1 B e n e f i t s o f f u n c t i o n a l p r o g r a m m i n g

A P P L I C A B L E T O C O N C U R R E N T P R O G R A M S 1

Functional concurrency foundations 3
1.1 What you’ll learn from this book 5

1.2 Let’s start with terminology 6
Sequential programming performs one task at a
time 6 я Concurrent programming runs multiple tasks at the
same time 7* Parallel programming executes multiples tasks
simultaneously 8 ■ Multitasking performs multiple tasks
concurrently over time 10 я Multithreading for performance
improvement 11

1.3 Why the need for concurrency? 12
Present and future of concurrent programming 14

CONTENTS

1.4 The pitfalls o f concurrent programming 15
Concurrency hazards 16 • The sharing of state
evolution 18 ■ A simple real-world example: parallel
quicksort 18 • Benchmarking in F# 22

1.5 Why choose functional programming
for concurrency? 23
Benefits of functional programming 25

1.6 Embracing the functional paradigm 26

1.7 Why use F# and C# for functional concurrent
programming? 27

Functional programming techniques for concurrency 30
2.1 Using function com position to solve

com plex problems 31
Function composition in C# 31 ■ Function
composition in F# 33

2.2 Closures to simplify functional thinking 34
Captured variables in closures with lambda
expressions 36 ■ Closures in a multithreading environment 37

2.3 M emoization-caching technique for
program speedup 39

2.4 M emoize in action for a fast web crawler 43

2.5 Lazy m em oization for better perform ance 46
Gotchas forfunction memoization 4 7

2.6 Effective concurrent speculation to amortize the cost o f
expensive computations 48
Precomputation with natural functional support 50 ■ Let the best
computation win 51

2.7 Being lazy is a good thing 52
Strict languages for understanding concurrent behaviors 53
Lazy caching technique and thread-safe Singleton pattern 54 • Lazy
support in F# 56 ■ Lazy and Task, a powerful combination 56

Functional data structures and immutability 59
3.1 Real-world example: hunting the thread-unsafe object 60

.NET immutable collections: a safe solution 63 я .NET concurrent
collections: a faster solution 68 я The agent message-passing
pattern: a faster, better solution 70

CONTENTS х і

3.2 Safely sharing functional data structures
am ong threads 72

3.3 Immutability for a change 73
Functional data structure for data parallelism 76 ■ Performance
implications of using immutability 76 ■ Immutability in
C# 77 ■ Immutability in F# 79 ■ Functional lists: linking
cells in a chain 80 ■ Building a persistent data structure: an
immutable binary tree 86

3.4 Recursive functions: a natural way to iterate 88
The tail of a correct recursive function: tail-call optimization 89
Continuation passing style to optimize recursive function 90

P a r t 2 How t o a p p r o a c h t h e d i f f e r e n t p a r t s o f a
CONCURRENT PROGRAM.. 95
The basics of processing big data: data parallelism, part 1 91

4.1 What is data parallelism? 98
Data and task parallelism 99 • The “embarrassingly parallel”
concept 100 • Data parallelism support in .NET 101

4.2 The Fork/Join pattern: parallel M andelbrot 102
When the GC is the bottleneck: structs vs. class objects 107
The downside of parallel loops 110

4.3 Measuring performance speed 110
Amdahl ’s Law defines the limit ofperformance improvement 111
Gustafson ’s Law: a step further to measure performance
improvement 112 • The limitations of parallel loops: the sum of
prime numbers 112 ■ What can possibly go wrong with a simple
loop? 114 ■ The declarative parallel programming model 115

5 PLINQ and MapReduce: data parallelism, part 2 118
5.1 A short introduction to PLINQ 119

How is PUNQmore functional? 120 ■ PLINQandpure
functions: the parallel word counter 121 ■ Avoiding side effects
with pure functions 123 ■ Isolate and control side effects:
refactoring the parallel word counter 124

5.2 Aggregating and reducing data in parallel 125
Deforesting: one of many advantages to folding 127 ■ Fold in
PLINQ: Aggregate functions 129 ■ Implementing a parallel
Reduce function for PLINQ 135 • Parallel list comprehension in
F#:PSeq 137 ■ Parallel arrays in F# 137

x i i CONTENTS

5.3 Parallel MapReduce pattern 139
The Map and Reduce functions 140 ■ Using MapReduce with the
NuGet package gallery 141

6 Realrtime event streams: functional reactive programming 148
6.1 Reactive programming: big event processing 149

6.2 .NET tools for reactive programming 152
Event combinators— a better solution 153 а .NET interoperability
with F# combinators 154

6.3 Reactive programming in .NET:
Reactive Extensions (Rx) 156
From LINQ/PLINQ to Rx 159 ■ IObservable: the dual
FEnumerable 160 я Reactive Extensions in action 161
Real-time streaming with RX 162 • From events to F#
observables 163

6.4 Taming the event stream: Twitter em otion analysis using
Rx programming 164
SelectMany: the monadic bind operator 171

6.5 An Rx publisher-subscriber 173
Using the Subject type for a powerful publisher-subscriber
hub 173 ■ Rx in relation to concurrency 174 ■ Implementing
a reusable Rx publisher-subscriber 175 ■ Analyzing tweet
emotions using an Rx Pub-Sub class 177 • Observers in
action 179 • The convenient F# object expression 180

7 Task-based functional parallelism 182
7.1 A short introduction to task parallelism 183

Why task parallelism and functional programming? 184 а Task
parallelism support i n . NET 185

7.2 The .NET Task Parallel Library 187
Running operations in parallel with TPL Parallel Invoke 188

7.3 The problem o f void in C# 191
The solution for void in C#: the unit type 191

7.4 Continuation-passing style: a functional control flow 193
Why exploit CPS? 194 ■ Waiting for a task to complete:
the continuation model 195

CONTENTS

7.5 Strategies for com posing task operations 200
Using mathematical patterns for better
composition 201 • Guidelines for using tasks 207

7.6 The parallel functional Pipeline pattern 207

Task asynchronicity for the win 213
8.1 The Asynchronous Programming Model (АРМ) 214

The value of asynchronous programming 215 • Scalability and
asynchronous programming 217 • CPU-bound and I/O-bound
operations 218

8.2 U nbounded parallelism with asynchronous
programming 219

8.3 Asynchronous support in .NET 220
Asynchronous programming breaks the code structure 223
Event-based Asynchronous Programming 223

8.4 C# Task-based Asynchronous Programming 223
Anonymous asynchronous lambdas 226 ■ Task<T> is a monadic
container 227

8.5 Task-based Asynchronous Programming:
a case study 230
Asynchronous cancellation 234 ■ Task-based asynchronous
composition with the monadic Bind operator 238 ■ Deferring
asynchronous computation enables composition 239 • Retry i f
something goes wrong 240 ■ Handling errors in asynchronous
operations 241 ■ Asynchronous parallelprocessing of the historical
stock market 243 ■ Asynchronous stock market parallel processing
as tasks complete 245

Asynchronous functional programming in F# 24 7
9.1 Asynchronous functional aspects 248

9.2 What’s the F# asynchronous workflow? 248
The continuation passing style in computation
expressions 249 ■ The asynchronous workflow in action:
Azure Blob storage parallel operations 251

CONTENTS

9.3 Asynchronous com putation expressions 256
Difference between computation expressions and
monads 257 ■ AsyncRetry: building your own
computation expression 259 ■ Extending the asynchronous
workflow 261 • Mapping asynchronous operation: the Async
. map functor 262 ■ Parallelize asynchronous workflows:
Async.Parallel 264 ■ Asynchronous workflow cancellation
support 268 ■ Taming parallel asynchronous operations 271

Functional combinators for fluent concurrent programming 2 75
10.1 The execution flow isn’t always on the happy path:

error handling 276
The problem of error handling in imperative programming 277

10.2 Error combinators: Retry, Otherwise, and
Task.Catch in C# 279
Error handling in FP: exceptions forflow control 282 ■ Handling
errors with Task<Option<T>> in C# 284 • TheF# AsyncOption
type: combining Async and Option 284 • Idiomatic F# functional
asynchronous error handling 286 ■ Preserving the exception
semantic with the Result type 28 7

10.3 Taming exceptions in asynchronous operations 290
Modeling error handling in F# with Async and
Result 295 ■ Extending theF# AsyncResult type with monadic
bind operators 296

10.4 Abstracting operations with functional combinators 300

10.5 Functional combinators in a nutshell 301
The TPL built-in asynchronous combinators 301 ■ Exploiting
the Task. WhenAny combinatorfor redundancy and
interleaving 302 ■ Exploiting the Task. WhenAll combinatorfor
asynchronous for-each 304 ■ Mathematical pattern review: what
you yve seen so fa r 305

10.6 The ultimate parallel composition
applicative functor 308
Extending the F# async workflow with applicative functor
operators 315 • Applicative functor semantics in F# with infix
operators 317 • Exploiting heterogeneous parallel computation
with applicative functors 318 ■ Composing and executing
heterogeneous parallel computations 319 ■ Controlling flow with
conditional asynchronous combinators 321 ■ Asynchronous
combinators in action 325

CONTENTS

Applying reactive programming everywhere with agents 328
11.1 What’s reactive programming, and how is it useful? 330

11.2 The asynchronous message-passing
programming m odel 331
Relation with message passing and immutability 334
Natural isolation 334

11.3 What is an agent? 334
The components of an agent 335 ■ What an agent can
do 336 ■ The share-nothing approach for lock-free concurrent
programming 336 ■ How is agent-based programming
functional? 337 • Agent is object-oriented 338

11.4 The F# agent: MailboxProcessor 338
The mailbox asynchronous recursive loop 340

11.5 Avoiding database bottlenecks with F#
MailboxProcessor 341
The MailboxProcessor message type: discriminated
unions 344 • MailboxProcessor two-way
communication 345 ■ Consuming the AgentSQL
from С# 346 ■ Parallelizing the workflow with group
coordination of agents 347 ■ How to handle errors with
F# MailboxProcessor 349 ■ Stopping MailboxProcessor
agents— CancellationToken 350 ■ Distributing the
work with MailboxProcessor 351 ■ Caching operations
with an agent 352 • Reporting results from a
MailboxProcessor 357 ■ Using the thread pool to report events from
MailboxProcessor 359

11.6 F# MailboxProcessor: 10,000 agents for a game o f life 359

Parallel workflow and agent programming with
TPL Dataflow 365

12.1 The power o f TPL Dataflow 366

12.2 Designed to compose: TPL Dataflow blocks 367
Using BufferBlock<TInput> as a FIFO buffer 368 ■ Transforming
data with TransformBlock<TInput, TOutput> 369 ■ Completing
the work with ActionBlock<TInput > 370 я Linking dataflow
blocks 372

x v i

P a r t З

ІЗ

CONTENTS

12.3 Im plem enting a sophisticated Producer/C onsum er
with TDF 372
A multiple Producer/single Consumer pattern: TPL Dataflow 372
A single Producer/multiple Consumer pattern 3 74

12.4 Enabling an agent m odel in C# using TPL Dataflow 374
Agent fold-over state and messages: Aggregate 377
Agent interaction: a parallel word counter 3 78

12.5 A parallel workflow to compress and encrypt a
large stream 382
Context: the problem o f processing a large stream
of data 383 ■ Ensuring the order integrity of a
stream of messages 388 ■ Linking, propagating,
and completing 389 ■ Rules for building a TDF
workflow 390 • Meshing Reactive Extensions (Rx)
and TDF 391

M o d e r n p a t t e r n s o f c o n c u r r e n t
PROGRAMMING APPLIED.. 3 9 5

Recipes and design patterns for successful
concurrent programming 397

13.1 Recycling objects to reduce memory consum ption 398
Solution: asynchronously recycling a pool of objects 399

13.2 Custom parallel Fork/Join operator 401
Solution: com posing a pipeline of steps forming the Fork/Join
pattern 402

13.3 Parallelizing tasks with dependencies: designing code to
optimize performance 404
Solution: implementing a dependencies graph of tasks 403

13.4 Gate for coordinating concurrent I /O operations sharing
resources: one write, multiple reads 409
Solution: ap p ly in g multiple read/-write operations to shared thread-
safe resources 409

13.5 Thread-safe random number generator 414
Solution: using the ThreadLocal object 413

CONTENTS х ѵ іі

13.6 Polymorphic event aggregator 416
Solution: implementing a polymorphic publisher-subscriber
pattern 416

13.7 Custom Rx scheduler to control the degree o f
parallelism 419
Solution: implementing a scheduler with multiple concurrent
agents 419

13.8 Concurrent reactive scalable client/server 422
Solution: combining Rx and asynchronous programming 423

13.9 Reusable custom high-performing parallel
filter-map operator 431
Solution: combiningfilter and map parallel operations 431

13.10 Non-blocking synchronous message-passing m odel 435
Solution: coordinating the payload between operations using the
agent programming model 436

13.11 Coordinating concurrent jobs using the agent
programming m odel 440
Solution: implementing an agent that runs jobs with a configured
degree of parallelism 441

13.12 Com posing monadic functions 444
Solution: combining asynchronous operations using the Kleisli
composition operator 445

Building a scalable mobile app with concurrent
functional programming 449

14.1 Functional programming on the server in the
real world 450

14.2 How to design a successful performant application 451
The secret sauce: ACD 452 • A different asynchronous pattern:
queuing work for later execution 453

14.3 Choosing the right concurrent programming m odel 454
Real-time communication with SignalR 45 7

14.4 Real-time trading: stock market high-level
architecture 457

x v i i i CONTENTS

14.5 Essential elem ents for the stock market application 461

14.6 Let’s code the stock market trading application 462
Benchmark to measure the scalability of the stock ticker
application 482

appendix A Functional programming 484
appendix B F# overview 498
appendix С Interoperability between an F# asynchronous workflow and

.N E T Task 513

index 516

