Table of Contents

Preface	1-19/1-19	1
Section 1: TensorFlow 2 and Deep Learning App Computer Vision	lied to	
Chapter 1: Computer Vision and Neural Networks		11
Technical requirements		11
Computer vision in the wild		12
Introducing computer vision		12
Main tasks and their applications		13
Content recognition		13
Object classification		13
Object identification		14
Object detection and localization		15
Object and instance segmentation		16
Pose estimation		17
Video analysis Instance tracking		17 18
Action recognition		18
Motion estimation		19
Content-aware image edition		19
Scene reconstruction		20
A brief history of computer vision		20
First steps to initial successes		20
Underestimating the perception task		21
Hand-crafting local features		21
Adding some machine learning on top		23
Rise of deep learning		24
Early attempts and failures		24
Rise and fall of the perceptron		25
Too heavy to scale Reasons for the comeback		25
The internet – the new El Dorado of data science		25 26
More power than ever		26
Deep learning or the rebranding of artificial neural networks		27
What makes learning deep?		27
Deep learning era		28
Getting started with neural networks		29
Building a neural network		29
Imitating neurons		29
Biological inspiration		29
Mathematical model Implementation	The Leasure test	30 32
Layering neurons together	hassar or	33

	Mathematical model 34	4
	Implementation 3	
	Applying our network to classification	6
	Setting up the task	
	Implementing the network 33	
	Training a neural network	
	Learning strategies 40	
	Supervised learning Unsupervised learning 4	
	Reinforcement learning 4	
	Teaching time	
	Evaluating the loss 4	2
	Backpropagating the loss 43	3
	Teaching our network to classify	
	Training considerations – underfitting and overfitting 49	
	Summary	0
	Questions 5	0
	Further reading 50	0
Ch	napter 2: TensorFlow Basics and Training a Model	4
OI		
	Technical requirements 5	
	Getting started with TensorFlow 2 and Keras	
	Introducing TensorFlow 52	
	TensorFlow's main architecture	
	Introducing Keras	
	A simple computer vision model using Keras	
	Preparing the data	
	Building the model 55 Training the model 55	
	Training the model 50 Model performance 57	
	Core concepts 55	
	Introducing tensors 55	
	TensorFlow graphs Comparing lazy execution to eager execution 59	
	Comparing lazy execution to eager execution Creating graphs in TensorFlow 2	
	Introducing TensorFlow AutoGraph and tf.function	
	Backpropagating errors using the gradient tape	
	Keras models and layers	
	Sequential and functional APIs	
	Callbacks 6	
	Advanced concepts	
	How tf.function works	
	Variables in TensorFlow 2	
	Distribution strategies 6	
	Using the Estimator API	
	Available pre-made Estimators 69 Training a custom Estimator 70	
	The TensorFlow ecosystem	
	TensorBoard 7	7

TensorFlow Addons and TensorFlow Extended	72
TensorFlow Lite and TensorFlow.js	73
Where to run your model	73
On a local machine	74
On a remote machine	74
On Google Cloud	75
Summary	75
Questions	76
	70
Chapter 3: Modern Neural Networks	77
Technical requirements	77
Discovering convolutional neural networks	77
Neural networks for multidimensional data	78
Problems with fully connected networks	78
An explosive number of parameters	78
A lack of spatial reasoning	78
Introducing CNNs	79
CNN operations	80
Convolutional layers	80
Concept	80
Properties	82
Hyperparameters	83
TensorFlow/Keras methods	85 89
Pooling layers Concept and hyperparameters	89
TensorFlow/Keras methods	90
Fully connected layers	92
Usage in CNNs	92
TensorFlow/Keras methods	93
Effective receptive field	93
Definitions	94
Formula	95
CNNs with TensorFlow	95
Implementing our first CNN	96
LeNet-5 architecture	96
TensorFlow and Keras implementations	97
Application to MNIST	99
Refining the training process	99
Modern network optimizers	100
Gradient descent challenges	100
Training velocity and trade-off Suboptimal local minima	100 101
A single hyperparameter for heterogeneous parameters	102
Advanced optimizers	102
Momentum algorithms	102
The Ada family	104
Regularization methods	105
Early stopping	106
L1 and L2 regularization	106
Principles	106

	TensorFlow and Keras implementations Dropout Definition TensorFlow and Keras methods Batch normalization Definition TensorFlow and Keras methods Summary	107 110 110 111 111 111 112
	Questions	113
_	Further reading	113
	ection 2: State-of-the-Art Solutions for Classic ecognition Problems	
Ch	napter 4: Influential Classification Tools	117
-	Technical requirements	117
	Understanding advanced CNN architectures	118
	VGG – a standard CNN architecture	118
	Overview of the VGG architecture	118
	Motivation	118
	Architecture	119
	Contributions – standardizing CNN architectures	120
	Replacing large convolutions with multiple smaller ones	120
	Increasing the depth of the feature maps	121
	Augmenting data with scale jittering Replacing fully connected layers with convolutions	121 122
	Implementations in TensorFlow and Keras	123
	The TensorFlow model	123
	The Keras model	123
	GoogLeNet and the inception module	124
	Overview of the GoogLeNet architecture	124
	Motivation	124
	Architecture	125
	Contributions – popularizing larger blocks and bottlenecks	127
	Capturing various details with inception modules	127
	Using 1 x 1 convolutions as bottlenecks	128
	Pooling instead of fully connecting	129 129
	Fighting vanishing gradient with intermediary losses Implementations in TensorFlow and Keras	130
	Inception module with the Keras Functional API	130
	TensorFlow model and TensorFlow Hub	132
	The Keras model	133
	ResNet – the residual network	134
	Overview of the ResNet architecture	135
	Motivation	135
	Architecture	136
	Contributions – forwarding the information more deeply	137
	Estimating a residual function instead of a mapping	137 138
	Going ultra-deep Implementations in TensorFlow and Keras	138
	Residual blocks with the Keras Functional API	139

The TensorFlow model and TensorFlow The Keras model	/ Hub 139 140
Leveraging transfer learning	140
Overview Definition	141
	141 141
Human inspiration Motivation	142
Transferring CNN knowledge	144
Use cases	144
Similar tasks with limited training data	145
Similar tasks with abundant training data	
Dissimilar tasks with abundant training of	data 146
Dissimilar tasks with limited training data	a 146
Transfer learning with TensorFlow and I	Keras 146
Model surgery	147
Removing layers	147
Grafting layers	148
Selective training	148
Restoring pretrained parameters	148 149
Freezing layers	
Summary	149
Questions	150
Further reading	150
Chapter 5: Object Detection Models	151
Technical requirements	151
Introducing object detection	151
Background	152
Applications Priof biston	152
Brief history	152
Evaluating the performance of a model	153
Precision and recall	154
Precision-recall curve	154
Average precision and mean average p	
Average precision threshold	156
A fast object detection algorithm – Yo	JLO 157
Introducing YOLO	158
Strengths and limitations of YOLO	158
YOLO's main concepts	158
Inferring with YOLO	160
The YOLO backbone	160
YOLO's layers output	161
Introducing anchor boxes	162
How YOLO refines anchor boxes	164
Post-processing the boxes	165
NMS	167
YOLO inference summarized	168
Training YOLO	169
How the YOLO backbone is trained	170
YOLO loss	and notted and the partners and 170

	Bounding box loss	171
	Object confidence loss	172
	Classification loss Full YOLO loss	173 173
	Training techniques	173
	Faster R-CNN – a powerful object detection model	174
	Faster R-CNN's general architecture	175
	Stage 1 – Region proposals	175
	Stage 2 – Classification	177
	Faster R-CNN architecture	177
	Rol pooling	178
	Training Faster R-CNN	180
	Training the RPN	180
	The RPN loss	181
	Fast R-CNN loss Training regimen	182 182
	TensorFlow Object Detection API	183
	Using a pretrained model	183
	Training on a custom dataset	183
	Summary	184
	Questions	184
	Further reading	184
		104
Ch	apter 6: Enhancing and Segmenting Images	185
	Technical requirements	185
	Transforming images with encoders-decoders	186
	Introduction to encoders-decoders	186
	Encoding and decoding	186
	Auto-encoding	188
	Purpose	189
	Basic example – image denoising	191
	Simplistic fully connected AE	191
	Application to image denoising Convolutional encoders-decoders	191
		192
	Unpooling, transposing, and dilating Transposed convolution (deconvolution)	192 192
	Unpooling	195
	Upsampling and resizing	196
	Dilated/atrous convolution	197
	Example architectures – FCN and U-Net Fully convolutional networks	199
	U-Net	201
	Intermediary example – image super-resolution	202
	FCN implementation	202
	Application to upscaling images	203
	Understanding semantic segmentation	203
	Object segmentation with encoders-decoders	204
	Overview	204
	Decoding as label maps Training with segmentation losses and metrics	204
	rianning with segmentation losses and metrics	200

Post-processing with conditional random fields Advanced example – image segmentation for self-driving cars Task presentation Exemplary solution The more difficult case of instance segmentation From object segmentation to instance segmentation Respecting boundaries Post-processing into instance masks From object detection to instance segmentation – Mask R-CNN Applying semantic segmentation to bounding boxes Building an instance segmentation model with Faster-RCNN Summary Questions Further reading Section 3: Advanced Concepts and New Frontiers of	208 209 209 210 210 211 212 213 214 215
Computer Vision	
Chapter 7: Training on Complex and Scarce Datasets Technical requirements Efficient data serving Introducing the TensorFlow Data API Intuition behind the TensorFlow Data API Feeding fast and data-hungry models Inspiration from lazy structures Structure of TensorFlow data pipelines Extract, Transform, Load API interface Setting up input pipelines Extracting (from tensors, text files, TFRecord files, and more) From NumPy and TensorFlow data From files	219 220 220 220 220 221 221 222 223 224 224 224 225
From other inputs (generator, SQL database, range, and others) Transforming the samples (parsing, augmenting, and more) Parsing images and labels Parsing TFRecord files Editing samples Transforming the datasets (shuffling, zipping, parallelizing, and more)	225 226 226 227 228 228
Structuring datasets Merging datasets Loading Optimizing and monitoring input pipelines Following best practices for optimization	228 230 231 231 231
Parallelizing and prefetching Fusing operations Passing options to ensure global properties Monitoring and reusing datasets Aggregating performance statistics Caching and reusing datasets How to deal with data scarcity	231 233 234 235 235 236 237
Augmenting datasets	237

	Overview Why augment datasets?	237
	Considerations Augmenting images with TensorFlow	239 241
	TensorFlow Image module	241
	Example – augmenting images for our autonomous driving application	242 243
	Rendering synthetic datasets Overview	243
	Rise of 3D databases	243
	Benefits of synthetic data	244
	Generating synthetic images from 3D models	245
	Rendering from 3D models Post-processing synthetic images	246 247
	Problem – realism gap	248
	Leveraging domain adaptation and generative models (VAEs and GANs)	249
	Training models to be robust to domain changes	249
	Supervised domain adaptation	250
	Unsupervised domain adaptation Domain randomization	250 253
	Generating larger or more realistic datasets with VAEs and GANs	254
	Discriminative versus generative models	254
	VAEs	255
	GANs Augmenting datasets with conditional GANs	258 260
	Summary	262
	Questions	262
	Further reading	262
01		
Ch	apter 8: Video and Recurrent Neural Networks	263
	Technical requirements	263
	Introducing RNNs	264
	Basic formalism	264
	General understanding of RNNs	266
	Learning RNN weights	267
	Backpropagation through time	268 269
	Truncated backpropagation Long short-term memory cells	270
	LSTM general principles	270
	LSTM inner workings	271
	Classifying videos	273
	Applying computer vision to video	273
	Classifying videos with an LSTM	274
	Extracting features from videos	276
	Training the LSTM	281
	Defining the model	281
	Loading the data Training the model	282 283
	Summary	283
	Questions	283
	Further reading	284
		_01

Chapter 9: Optimizing Models and Deploying on Mobile Devices	285
Technical requirements	285
Optimizing computational and disk footprints	286
Measuring inference speed	286
Measuring latency	287
Using tracing tools to understand computational performance	287
Improving model inference speed	289
Optimizing for hardware	289
Optimizing on CPUs	290
Optimizing on GPUs	290
Optimizing on specialized hardware	290
Optimizing input	291
Optimizing post-processing	291
When the model is still too slow	292
Interpolating and tracking	292
Model distillation	292
Reducing model size	293
Quantization	294
Channel pruning and weight sparsification	294
On-device machine learning	294
Considerations of on-device machine learning	295
Benefits of on-device ML	296
Latency	296
Privacy	296
Cost Limitations of on-device ML	296
	297
Practical on-device computer vision	297
On-device computer vision particularities	297
Generating a SavedModel	298
Generating a frozen graph	298 299
Importance of preprocessing	
Example app – recognizing facial expressions	300
Introducing MobileNet	301
Deploying models on-device	301
Running on iOS devices using Core ML	302
Converting from TensorFlow or Keras Loading the model	302 304
Using the model	304
Running on Android using TensorFlow Lite	305
Converting the model from TensorFlow or Keras	306
Loading the model	306
Using the model	307
Running in the browser using TensorFlow.js	309
Converting the model to the TensorFlow.js format	309
Using the model	310
Running on other devices	311
Summary	312
Questions	312
Migrating from TensorFlow 1 to TensorFlow 2	313

Table of Contents

Assessments	old onisimits 329
Other Books You May Enjoy	339
Index	343