Topology of Transitive Transformation Groups is devoted to homogeneous spaces of compact Lie groups or, which is the same, to transitive actions of compact Lie groups on smooth manifolds. The main problem discussed is that of classifying all transitive actions of compact Lie groups on a given homogeneous space. As a special case, the problem of determining all possible inclusions among compact transitive Lie transformation groups is considered. This is equivalent to the description of all factorizations of an arbitrary compact Lie group into a product of two Lie subgroups.

To solve these problems, the topological approach is used leading to the study of the topology of compact Lie groups and their homogeneous spaces. The book contains a detailed exposition of the real cohomology and the real homotopy theory of these spaces including H. Cartan's famous theorem.

To make this book as self-contained as possible, the author has included introductory sections about Lie groups, homogenous spaces, graded algebras, and cochain complexes.

List of notations	
Chapter 1. Lie groups and homogeneous spaces	1
§1. Lie groups and their actions on manifolds 1. Basic conventions about manifolds 2. Lie groups and their homomorphisms 3. Actions of Lie groups 4. Lie subgroups and coset manifolds 5. The structure of an orbit 6. General morphisms of actions 7. Coverings of actions	6
§2. Infinitesimal study of Lie groups and their actions 1. Flows and one-parameter subgroups 2. The tangent algebra of a Lie group 3. Lie subgroups and Lie subalgebras 4. Infinitesimal study of actions 5. Lie transformation groups 6. Compact Lie groups and Lie algebras 7. Complexification 8. Examples of compact and reductive complex Lie groups	16 16 18 20 23 25 27 29 30
§3. Compact Lie groups, their subgroups and homomorphisms 1. Maximal tori 2. Characters, weights and roots 3. Weyl chambers, simple roots, Weyl group 4. Dynkin diagrams and the classification of compact Lie algebras 5. The classification of connected compact Lie groups 6. Automorphisms 7. Linear representations 8. The character and the dimension of a representation 9. On the classification of connected Lie subgroups of simple compact Lie groups 10. Indices of homomorphisms and subgroups 11. Subgroups of maximal rank 12. Centralizers of tori 13. Parabolic subgroups	58 61 64
§4. Homogeneous spaces 1. The group model 2. The main problems	67 67 70

 The isotropy representation The group of automorphisms The group of autosimilitudes Invariant tensor fields Averaging operators Invariant Riemannian structures Symmetric homogeneous spaces Some homotopy properties of homogeneous spaces 	72 73 74 76 78 80 82 83
55. Factorizations of Lie groups 1. Enlargements of transitive actions and factorization 2. Factorizations of Lie groups and Lie algebras 3. Some examples of inclusions between transitive act 4. Factorizations of compact Lie groups and Lie algebras	85 ns of groups 85 87 ions 90
Notes	95
Chapter 2. Graded algebras and cohomology	97
 Graded algebras Preliminaries about graded vector spaces Preliminaries about graded algebras Generators of a canonical graded algebra Derivations A uniqueness theorem for the tensor product decommendated to algebras Graded coalgebras Graded bialgebras Primitive elements Hopf's and Samelson's theorems Filtered vector spaces and algebras 	97 97 101 104 106 mposition 108 110 113 115 117
 Complexes and differential graded algebras Complexes Differential graded algebras Bicomplexes Actions of graded Lie algebras Homotopies Acyclic and contractible differential graded algebra Minimal differential graded algebras 	121 121 122 124 126 128
§8. Cartan algebras 1. Koszul algebras and Cartan algebras 2. Regular sequences 3. The Koszul formula 4. The minimal model of a Cartan algebra	134 134 136 137 139

5.	The classification of Cartan algebras	1
6.		1
7.	Formal Cartan algebras	1
8.	A class of indecomposable minimal Cartan algebras	1
Not	es	1
Ch	apter 3. Real topology of compact Lie groups and their homo-	
	neous spaces	1
§9.	Invariant exterior forms	1
1.	Preliminaries	1
2.	The main theorem	1
3.	Right-invariant exterior forms on a Lie group]
4.	The chain complex of a Lie algebra	1
5.	Bi-invariant forms	1
6.	Invariant forms on a locally direct product	11 6/
7.	The cohomology bialgebra of a compact Lie group	1
8.	The tangent algebra interpretation	
9.	The description of primitive elements	
10.	Invariant forms on homogeneous spaces	
11.	The cohomology of symmetric homogeneous spaces	
7	. Weil algebras	
1.	The construction of the Weil algebra	MA.
2.	The invariants	
3.	The vanishing of the cohomology	
4.	The transgression	
5.	The primitive elements and the transgression	
6.	The structure of symmetric invariants	
7.	The inverse of the transgression	
8.	The action of a homomorphism	
9.	The Weil algebra of a direct product	III -
10.	An explicit expression for the transgression	
§11	. Symmetric invariants	
	The reduction to invariants of the Weyl group	
2.	Computations for classical groups	
3.	A survey of fundamental properties of invariants of the Weyl group	
4.	On polynomial ideals generated by invariants	
5.	Simple subgroups with a big Coxeter number	
6.	. Computations for exceptional groups	
7.	. The homomorphism associated with a linear representation	
§12	Cartan's theorem	
1.	. A generalization of the Weil algebra	

2. The Cartan algebra	201
3. Cartan's theorem	202
4. The minimal model and the ranks of the homotopy groups	205
5. The exterior grading	208
6. The deficiencies, the Samelson subalgebra and the formality	210
7. The homomorphism associated with the orbit mapping	212
8. The case when the stabilizer is not necessarily connected	213
§13. Some special cases and examples	214
1. Some sufficient formality conditions	214
2. Hopf homogeneous manifolds	216
3. The Euler characteristic	217
4. The homogeneous spaces defined by characters of a maximal torus	218
Notes	222
Classic A. Tarabasiana batanan tanan itina tanan farmatian ayang	224
Chapter 4. Inclusions between transitive transformation groups	
§14. Factorizations of compact Lie groups	224
1. Topological properties of factorizations	224
2. Factorizations of simple compact Lie groups	226
3. Factorizations of arbitrary compact Lie groups	229
4. Compact enlargements of transitive actions of simple groups	231
5. The ordered set of transitive actions	234
6. Factorizations with a discrete intersection	235
§15. Compact complex homogeneous spaces	238
1. Flag manifolds	238
2. Projective homogeneous spaces	240
3. Tits fibering	242
4. The connected automorphism group of a flag manifold	243
5. The group of biholomorphic transformations of a flag manifold	245
§16. The group of isometries of Riemannian homogeneous spaces	246
1. The simplest consequences of the classification of enlargements	246
2. The group of isometries of the natural Riemannian structure	248
3. Auxiliary lemmas	248
4. Proof of Theorem 3	250
Notes	253
Chapter 5. On the classification of transitive actions	254
§17. Some general properties of transitive actions	255
1. An estimate for the length of a transitive group	255
2. The topological meaning of the Dynkin index	255
3. Homogeneous spaces of simple compact Lie groups	258

4.	The splitting of transitive actions on highly connected manifolds	259
5.	Some remarks concerning the decomposability	261
§18.	Homogeneous spaces of rank 1 or 2	263
1.	Homogeneous spaces of rank 1	263
2.	The list of all homogeneous spaces of rank 1	264
3.	The classification of homogeneous spaces of rank 1	265
4.	The list of homogeneous spaces of rank 2: the case of a simple group	267
5.	The list of homogeneous spaces of rank 2: the case of a group of length 2	269
6.	Transitive actions on a product of two spheres	273
7.	Some examples	275
§19.	Homogeneous spaces of positive Euler characteristic	276
1.	Derivations of the cohomology algebra	276
2.	The canonical decomposition	279
3.	Transitive actions on the complex and the quaternion manifolds of flags	280
4.	Transitive actions on the coset manifold modulo the maximal torus	281
5.	The classification of homogeneous spaces of positive Euler characteristic	282
Not	es	283
Bib	liography	285
Ind	lex a notion a lo agaiggast regal the lo agaigs so have pile.	295