Deep within galaxies like the Milky Way, astronomers have found a fascinating legacy of Einstein's general theory of relativity: supermassive black holes. Connected to the evolution of the galaxies that contain these black holes, galactic nuclei are the sites of uniquely energetic events, including quasars, stellar tidal disruptions, and the generation of gravitational waves. This textbook is the first comprehensive introduction to dynamical processes occurring in the vicinity of supermassive black holes in their galactic environment. Filling a critical gap, it is an authoritative resource for astrophysics and physics graduate students, and researchers focusing on galactic nuclei, the astrophysics of massive black holes, galactic dynamics, and gravitational wave detection. It is an ideal text for an advanced graduate-level course on galactic nuclei and as supplementary reading in graduate-level courses on highenergy astrophysics and galactic dynamics.

David Merritt summarizes the theoretical work of the last three decades on the evolution of galactic nuclei, the formation of massive black holes, and the interaction between black holes and stars. He explores in depth such important topics as observations of galactic nuclei, dynamical models, weighing black holes, motion near supermassive black holes, evolution of nuclei due to gravitational encounters, loss cone theory, and binary supermassive black holes. Self-contained and up-to-date, the textbook includes a summary of the current literature and previously unpublished work by the author.

For researchers working on active galactic nuclei, galaxy evolution, and the generation of gravitational waves, this book will be an essential resource.

"This direct, clear, and authoritative book shows Merritt's extensive experience with the techniques needed to understand the motions of stars in galaxies. It will be used as a reference by those who interpret the observations of stellar motions in galactic nuclei and will serve as a basis for further theoretical work."

—Tim de Zeeuw, European Southern Observatory

"A leading expert on the dynamics of galactic nuclei, and of stars near massive black holes, Merritt has led many of the advances in our understanding of these systems. His very timely book fills a large gap in the literature of stellar dynamics and covers all the material that is required to embark on research in this field."

Tal Alexander, Weizmann Institute of Science

"Merritt is one of the most highly regarded astrophysical dynamicists in the field.

Excellent, complete, and well-balanced,

Dynamics and Evolution of Galactic

Nuclei reflects his rigorous work."

Bradley Peterson, Ohio StateUniversity

**David Merritt** is professor of physics at the Rochester Institute of Technology.

## PRINCETON SERIES IN ASTROPHYSICS

David N. Spergel, Series Editor

Jacket Photograph: Centaurus A (NGC 5128) is the closest active galaxy to the Earth. This galaxy appears to be the result of a collision between two otherwise normal galaxies; near the galaxy's center, cosmic debris is being consumed by a central, supermassive black hole. Courtesy of Dr Tim Carruthers, Cairns, Australia





| Preface |                                                                | ix   |
|---------|----------------------------------------------------------------|------|
| Chapter | 1 INTRODUCTION AND HISTORICAL OVERVIEW                         | 1    |
| Chapter | 2 OBSERVATIONS OF GALACTIC NUCLEI AND SUPERMASSIVE BLACK HOLES | . 11 |
| 2.1     | Structure of galaxies and galactic nuclei                      | 11   |
| 2.2     | Techniques for weighing black holes                            | 18   |
| 2.3     | Supermassive black holes in the Local Group                    | 29   |
| 2.4     | Phenomenology                                                  | 33   |
| 2.5     | Evidence for intermediate-mass black holes                     | 45   |
| 2.6     | Evidence for binary and multiple supermassive black holes      | 47   |
| 2.7     | Gravitational waves                                            | 52   |
| Chapter | 3 COLLISIONLESS EQUILIBRIA                                     | 57   |
| 3.1     | Orbits, integrals, and steady states                           | 59   |
| 3.2     | Spherical nuclei                                               | 72   |
| 3.3     | The adiabatic growth model                                     | 90   |
| 3.4     | Axisymmetric nuclei                                            | 93   |
| 3.5     | Triaxial nuclei                                                | 100  |
| Chapter | 4 MOTION NEAR SUPERMASSIVE BLACK HOLES                         | 117  |
| 4.1     | Keplerian orbits                                               | 120  |
| 4.2     | Perturbed orbits                                               | 125  |
| 4.3     | The post-Newtonian approximation                               | 131  |
| 4.4     | Newtonian perturbations                                        | 135  |
| 4.5     | Relativistic orbits                                            | 157  |
| 4.6     | Capture                                                        | 176  |
| 4.7     | Relativistic motion in the presence of a distributed mass      | 183  |
| 4.8     | Motion in the presence of a second massive body                | 192  |
| 4.9     | Stellar motions at the center of the Milky Way                 | 203  |
| Chapter | 5 THEORY OF GRAVITATIONAL ENCOUNTERS                           | 213  |
| 5.1     | Basic concepts and time of relaxation                          | 213  |
| 5.2     | Diffusion coefficients                                         | 216  |

| 5.3                                                    | Fokker–Planck equation                                       | 236 |
|--------------------------------------------------------|--------------------------------------------------------------|-----|
| 5.4                                                    | Gravitational Brownian motion                                | 246 |
| 5.5                                                    | Orbit-averaged Fokker–Planck equation                        | 251 |
| 5.6                                                    | Gravitational encounters near a supermassive black hole      | 264 |
| 5.7                                                    | Encounters with a spinning supermassive black hole           | 277 |
| Chapter 6                                              | LOSS-CONE DYNAMICS                                           | 289 |
| 6.1                                                    | Spherical symmetry                                           | 297 |
| 6.2                                                    | Nonspherical nuclei                                          | 326 |
| 6.3                                                    | Binary and hypervelocity stars                               | 341 |
| 6.4                                                    | Relativistic loss cones and extreme-mass-ratio inspirals     | 350 |
| Chapter 7                                              | COLLISIONAL EVOLUTION OF NUCLEI                              | 361 |
| 7.1                                                    | Evolution of the stellar distribution around a supermassive  |     |
|                                                        | black hole                                                   | 366 |
| 7.2                                                    | Cusp (re)generation                                          | 383 |
| 7.3                                                    | Black-hole-driven expansion                                  | 390 |
| 7.4                                                    | Massive perturbers                                           | 391 |
| 7.5                                                    | Evolution of nuclei lacking massive black holes              | 395 |
| Chapter 8 BINARY AND MULTIPLE SUPERMASSIVE BLACK HOLES |                                                              | 415 |
| 8.1                                                    | Interaction of a massive binary with field stars             | 417 |
| 8.2                                                    | Massive binary at the center of a galaxy: I. Early evolution | 432 |
| 8.3                                                    | Massive binary at the center of a galaxy: II. Late evolution | 446 |
| 8.4                                                    | Interaction of binary supermassive black holes with gas      | 462 |
| 8.5                                                    | Simulations of galaxy mergers                                | 467 |
| 8.6                                                    | Dynamics of intermediate-mass black holes                    | 468 |
| 8.7                                                    | Triple supermassive black holes and the final-parsec problem | 483 |
| Suggestions for Further Reading                        |                                                              | 489 |
| References                                             |                                                              | 493 |
| Index                                                  |                                                              | 535 |