Contents

Co	ntributors	X
Pre	eface	XV
1.	From affective to cognitive processing: Functional organization	
	of the medial frontal cortex	1
	Joseph Simon IV, Peter H. Rudebeck, and Erin L. Rich	
	1. Introduction	2
	2. Anatomical organization	3
	3. Organization of function	6
	4. Disorders of function	14
	5. Summary	20
	Acknowledgments	20
	References	21
2.	Medial prefrontal cortex encoding of stress and anxiety	29
	David S. Jacobs and Bita Moghaddam	
	1. Introduction	30
	2. Brief review of rodent medial prefrontal cortex subdivisions	30
	3. Stress and medial prefrontal cortex function	31
	4. The medial prefrontal cortex encoding of fear states and fear learning	35
	5. Medial prefrontal cortex encoding of anxiety	37
	6. Medial prefrontal cortex manipulation of goal-directed action under anxiety	
	states	41
	7. Conclusion	48
	Acknowledgments	48
	References	48
3.	Integration of value and action in medial prefrontal neural	
	systems	57
	Beata Kaminska, Jessica P. Caballero, and David E. Moorman	
	1. Rodent medial prefrontal cortex	58
	2. Medial prefrontal neuronal representations of value and motivation	59
	3. Negative value: Punishment, fear, and aversion	59
	4. Positive value: Reward and approach	62
	5. Drugs of abuse	64

vi Contents

	6. Comparisons of positive and negative value	65
	7. Integration of value and action	68
	8. Summary and conclusions: Value, actions, both, or neither?	70
	References	74
4.	Dynamic decision making and value computations in medial	
••	frontal cortex	83
	Bilal A. Bari and Jeremiah Y. Cohen	
		84
	1. Introduction	85
	2. Value-based decision making	87
	3. Matching behavior	95
	4. Algorithms underlying matching behavior	98
	5. Movement vigor during flexible decision making	99
	6. Brain structures underlying flexible behavior7. Future directions	106
	References	106
	References	100
5.	Reward signaling by the rodent medial frontal cortex	115
	Mark Laubach, Linda M. Amarante, Marcelo S. Caetano, and Nicole K. Horst	
	1. What is the rodent medial frontal cortex?	116
	2. Dorsolateral prefrontal cortex, working memory, and persistent neural	
	activity	116
	3. Medial frontal cortex, performance monitoring, and persistent neural activity	118
	4. From working memory to reward processing	120
	5. Theta range activity is synchronized to reward consumption	121
	6. Theta range activity tracks the value of consummatory actions	122
	7. Anatomical basis for the rostral-caudal gradient of reward signaling	124
	8. Summary and conclusions	127
	Acknowledgments	127
	Conflict of interest	127
	Financial support	128
	References	128
6.	The anterior cingulate cortex and event-based modulation	
	of autonomic states	135
	Jeremy K. Seamans	
	1. Homology of the ACC from rat to human	136
	2. Popular theories of ACC function	138
	3. Anterior cingulotomies	139

Contents

	4. Why are anterior cingulotomies clinically efficacious?	141
	5. Properties of single ACC neurons: Flexibility, multi-responsivity and	
	contextualization	144
	6. Neuromodulation of the ACC: Lessons from the dopamine system	153
	7. A model for event-specific control of autonomic states	155
	8. The modulation of attractor dynamics in psychiatric conditions	156
	References	158
7.	Valence processing in the PFC: Reconciling circuit-level	
	and systems-level views	171
	Austin A. Coley, Nancy Padilla-Coreano, Reesha Patel, and Kay M. Tye	
	1. Introduction	172
	2. The mPFC encodes context-specific valence processing	174
	3. mPFC circuits and dynamics flexibly modulate social behaviors	182
	4. The mPFC is involved in addictive and compulsive behavior	187
	5. The mPFC as a major component in reward processing	195
	6. Summary	200
	Acknowledgments	201
	Competing interest	201
	Author contributions	201
	References	201
8.	Social processing by the primate medial frontal cortex	213
	Philip T. Putnam and Steve W.C. Chang	
	1. Introduction	214
	2. Key algorithms in social interactions	216
	3. Evidence from behavioral neurophysiology during social interactions	221
	4. Attributes of the MFC for social processing	230
	5. Social specificity of the MFC: Algorithms and implementations	237
	6. Conclusions	239
	Acknowledgment	240
	References	240
9.	Potential roles of the rodent medial prefrontal cortex in conflict	
	resolution between multiple decision-making systems	249
	Amber E. McLaughlin, Geoffrey W. Diehl, and A. David Redish	
	1. Multiple decision-making systems interact to inform action-selection	250
	2. Computation and neurobiology of decision systems	250
	3. Prefrontal cortex and decision systems	253

	4. Theories for decision system integration5. Prefrontal cortex and combining decision systems6. ConclusionsReferences	258 265 271 272
10.	Anterior cingulate cortex and adaptive control of brain and behavior	283
	Adam T. Brockett and Matthew R. Roesch	
	1. Introduction	284
	2. The evolution of the conflict monitoring hypothesis	285
	3. What does ACC signal? Insights from behavioral neurophysiology	291
	4. Conclusion	303
	Conflict of interest	303
	Acknowledgments	303
	References	304
11.	Oscillations as a window into neuronal mechanisms underlying dorsal anterior cingulate cortex function Benjamin Voloh, Rachel Knoebl, Benjamin Y. Hayden, and	311
	Jan Zimmermann	
	1. Introduction	312
	2. Insights from single unit studies: dACC as an economic structure	313
	3. Oscillations as a window into circuit interactions	316
	4. Computational principles of oscillatory coordination	321
	5. Oscillations in dACC as a link between the micro and macro	327
	6. Conclusion	328
	References	329
12.	Neuronal oscillations and the mouse prefrontal cortex Felix Jung and Marie Carlén	337
	1. Introduction	337
	2. The origins of neuronal oscillations	339
	3. Gamma oscillations in the prefrontal cortex	341
	4. Neuronal oscillations in the prefrontal-hippocampal system	346
	5. Respiration-entrained rhythms and the prefrontal cortex	351
	6. Cross-region synchronization by neuronal oscillations during fear behavior	354
	7. Conclusion	357
	Glossary	358
	References	358

13.	Prefrontal contributions to action control in rodents Stefanie Hardung, Zoe Jäckel, and Ilka Diester	373
	 Introduction Contributions of PFC subsections to response inhibition Anatomical connections of the mPFC to motor output structures Conclusion References 	374 382 387 388 388
14.	The midcingulate cortex and temporal integration Emmanuel Procyk, Vincent Fontanier, Matthieu Sarazin, Bruno Delord,	395
	Clément Goussi, and Charles R.E. Wilson	
	1. On time and behavior	396
	2. The neurobiological source of temporal integration in MCC	398
	3. Neurophysiological and causal correlates of temporal integration in MCC	404
	4. Conclusion	411
	References	413
15.	Medial prefrontal cortex and the temporal control of action	421
	Qiang Zhang, Matthew A. Weber, and Nandakumar S. Narayanan	
	1. Deciding when to act	421
	2. Paradigms for studying the temporal control of action	423
	3. Neurotransmitter systems	425
	4. Significance for human disease	426
	5. Lesion studies	428
	6. Neuronal correlates	430
	7. Stimulation	433
	8. Conclusion	434
	References	434
16.	Secondary motor cortex: Broadcasting and biasing animal's	
	decisions through long-range circuits	443
	Jen-Hau Yang and Alex C. Kwan	
	1. Introduction	444
	2. Organization of long-range circuits	446
	3. Circuits for perceptual behavior	448
	4. Circuits for adaptive movements	452
	5. Circuits for decision-making	455
	6. Other projections	460

X	Contents

7. Relevance for mental disorders	460
8. Conclusion: Many circuits, many functions	462
Acknowledgments	464
References	464

the burner of the first the second of the se