The book explores the basic principles, concepts and applications of geochemistry.

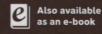
Geochemistry is a field of study that uses the tools and principles of chemistry to explain the mechanisms in geologic environments, and often focuses on determining processes that control the abundance and composition of minerals and their distribution in the earth's crust. Geochemistry also plays a vital role in environmental soil and water systems in identifying and modulating environmental problems, and in studying the composition, structure and processes of the earth. Therefore, this book helps in understanding the chemical composition of the earth and its applications. It explores the basic principles, concepts and applications of geochemistry and discusses its beneficial effects, bottlenecks, solutions, and future directions. In addition to case studies, topics such as chemical weathering, impacts on living beings and water, geochemical cycles, oxidation and redox reactions in geochemistry, isotopes, analytical techniques, medicinal, inorganic, marine, atmospheric, and environmental applications are presented.

Audience

This book will be very helpful for geochemists, environmental scientists, chemists, engineers, R&D professionals, as well as graduate students who are working in earth sciences, environmental chemistry and industrial technologies.

Inamuddin PhD is an assistant professor at King Abdulaziz University, Jeddah, Saudi Arabia and is also an assistant professor in the Department of Applied Chemistry, Aligarh Muslim University, Aligarh, India. He has extensive research experience in multidisciplinary fields of analytical chemistry, materials chemistry, electrochemistry, renewable energy and environmental science. He has published about 150 research articles in various international scientific journals, 18 book chapters, and edited 60 books with multiple well-known publishers.

Mohd Imran Ahamed PhD is in the Department of Chemistry, Aligarh Muslim University, Aligarh, India. He has published several research and review articles in SCI journals. His research focuses on ion-exchange chromatography, wastewater treatment and analysis, actuators and electrospinning.


Rajender Boddula PhD is currently working for the Chinese Academy of Sciences President's International Fellowship Initiative (CAS-PIFI) at the National Center for Nanoscience and Technology (NCNST, Beijing). His academic honors include multiple fellowships and scholarships, and he has published many scientific articles in international peer-reviewed journals, edited books with numerous publishers and has authored 20 book chapters.

Tariq Altalhi is Head of the Department of Chemistry and Vice Dean of Science College at Taif University, Saudi Arabia. He received his PhD from the University of Adelaide, Australia in 2014. His research interests include developing advanced chemistry-based solutions for solid and liquid municipal waste management, converting plastic bags to carbon nanotubes, and fly ash to efficient adsorbent material.

Cover design by Russell Richardson Front cover images supplied by Pixabay.com

D C		
Preface		xiii

1	Syst	ems: O	ccurrenc	e, Behavior, Exposure Pathways,	
			n Health	Kisks	1
		lis Gwe			2
	1.1		luction	1 . 10	2
	1.2			eological Systems	4
				Occurrence, and Geochemistry	4
		1.2.2		nce and Behavior of Toxic Contaminants	5
				Chrysotile Asbestos	5
				Toxic Metals	5
				Rare Earth Elements	6
	1.3	Huma	an Exposi	ure Pathways	7
		1.3.1	Occupa	tional Exposure	7
		1.3.2	Non-Oc	ccupational Exposure Routes	7
			1.3.2.1	Inhalation of Contaminated Particulates	7
			1.3.2.2	Ingestion of Contaminated Geophagic Earths	8
			1.3.2.3	Ingestion of Contaminated Drinking Water	8
			1.3.2.4	Ingestion of Contaminated Medicinal Plants	8
			1.3.2.5	Ingestion of Contaminated Wild Foods	9
	1.4	Hum	an Health	Risks and Their Mitigation	10
		1.4.1	Health 1	Risks	10
			1.4.1.1	Chrysotile Asbestos	10
			1.4.1.2	Toxic Metals	11
			1.4.1.3	Rare Earth Elements	11
		1.4.2	Mitigati	ing Human Exposure and Health Risks	12
			1.4.2.1		12
			1.4.2.2	Risk Evaluation	12
			1.4.2.3	Risk Mitigation	13
			1.4.2.4		13

	1.5	Futur	e Perspec	ctives	13
	1.6	Concl	usions		14
		Ackno	owledgen	nents	15
		Refere	ences		15
2	Ben	efits of	Geoche	mistry and Its Impact on Human Health	23
				rles Oluwaseun Adetunji,	
	Mui	hamma	d Akram	ı, Maliki Munirat, İnamuddin,	
	Um	me Lai	la, S.O. C	Okonkwo, Saher Islam	
	and	Jonath	an Inobe	eme	
	2.1	Intro	duction		24
	2.2	Gene	ral Overv	view of Geochemistry and Human Health	25
		2.2.1	Types o	f Geochemistry	26
		2.2.2	Some B	eneficial Effect of Some Mineral	
			With H	ealth Benefits	26
			2.2.2.1	Magnesium	27
				Manganese	27
			2.2.2.3	Calcium	27
			2.2.2.4	Cobalt	28
			2.2.2.5	Copper	28
			2.2.2.6	Zinc	29
			2.2.2.7	Iron	29
			2.2.2.8	Sodium	29
			2.2.2.9	Arsenic	30
			2.2.2.10	Chlorine	30
			2.2.2.11	Iodine	30
			2.2.2.12	Potassium	31
			2.2.2.13	Fluoride	31
		2.2.3	Applica	tion of Geochemistry on Human Health	32
	2.3	Concl	usion an	d Recommendations	33
		Refere	ences		34
3	App	licatio	ns of Geo	ochemistry in Livestock: Health	
	and Nutritional Perspective				37
	Cha	rles Oli	uwaseun	Adetunji, J. Inobeme, Inamuddin,	
	Muhammad Akram, A. Inobeme, Khuram Shahzad,				
	Mal	liki Mui	nirat, Sal	her Islam, Noshiza Majeed	
	and	S.O. 0	konkwo		
	3.1	Introd	luction		38
	3.2	Gener	ral and G	lobal Perspective About Geochemistry	
		in Liv	estock		39

		CONTENTS	V11
	3.3	Types of Geochemistry and Their Numerous Benefits	41
		3.3.1 Analytical Geochemistry	42
		3.3.2 Isotope Geochemistry	43
		3.3.3 Low Temperature Geochemistry	43
		3.3.4 Organic and Petroleum Geochemistry	44
	3.4	Application of Geochemistry in Livestock	44
	3.5	Geochemistry and Animal Health	44
	3.6	General Overview of Geochemistry in Livestock's Merits	
		of Geochemistry/Essential Minerals in Livestocks	45
		3.6.1 Specific Examples of Authors That Have Used	
		Essential Minerals in Livestock	47
		3.6.2 Livestock in Relation to Geominerals	48
		3.6.3 Trace Minerals Parallel Importance in Livestock	48
		3.6.4 Heavy Metals Impact Livestock	49
	3.7	Conclusion and Recommendations	50
		References	51
4	App	lication in Geochemistry Toward the Achievement	
		Sustainable Agricultural Science	57
		hammad Akram, Charles Oluwaseun Adetunji,	
		Okonkwo, Inamuddin, Umme Laila, J. Inobeme,	
		nobeme, Saher Islam and Maliki Munirat	
	4.1		58
	4.2	General Overview on the Utilization of Geochemistry	
		and Their Wide Application on Agriculture	59
		4.2.1 Classification	60
		4.2.2 Chemical Composition of Rocks	60
		4.2.3 Effect of Some Beneficial Minerals in Agriculture	60
		4.2.4 Beneficial Mineral Nutrients That are Crucial	
		to the Development of Plants	62
		4.2.4.1 Micronutrients	63
	4.3	Role of Geochemistry in Agriculture	65
	4.4	Geochemical Effects of Heavy Metals on Crops Health	65
	4.5	Conclusion and Recommendations	69
		References	69
5	Geo	ochemistry, Extent of Pollution, and Ecological Impact	
		Heavy Metal Pollutants in Soil	73
		iroop Chowdhury, Aliya Naz and Diksha Sharma	
	5.1	사람들이 가지 않는 것이 없는 가장이 가장이 되었다면 하는 것이 되었다면 하는데 하는데 하는데 하는데 하는데 하는데 되었다면 하는데 되었다.	74
		Material and Methods	75
		5.2.1 Review Process	75

		5.2.2 Ecological Risk Index	75
	5.3	Toxic Heavy Metal and Their Impact to the Ecosystems	76
		5.3.1 Arsenic	76
		5.3.2 Cadmium	77
		5.3.3 Chromium	78
		5.3.4 Copper	78
		5.3.5 Lead	79
		5.3.6 Nickel	79
		5.3.7 Zinc	80
	5.4	Metal Pollution in Soil Across the Globe	80
	5.5	Ecological and Human Health Risk Impacts	
		of Heavy Metals	85
	5.6	Conclusion	87
		References	87
6	Isot	ope Geochemistry	93
		veen Kumar Yadav, Amit Kumar Mauraya, Chinky Kochar,	
		han Taneja and S. Swarupa Tripathy	
	6.1	Introduction	93
	6.2	Basic Definitions	94
		6.2.1 The Notation	94
		6.2.2 The Fractionation Factor	95
		6.2.3 Isotope Fractionation	95
		6.2.3.1 Kinetic Isotope Fractionation	95
		6.2.3.2 Equilibrium Isotope Fractionation	96
		6.2.4 Mass Dependent and Independent Fractionations	97
	6.3	Application of Traditional Isotopes in Geochemistry	98
		6.3.1 Geothermometer	98
		6.3.2 Isotopes in Biological System	98
		6.3.2.1 Carbon (C)	99
		6.3.2.2 Nitrogen (N)	100
		6.3.3 Isotopes in Archaeology	100
		6.3.4 Isotopes in Fossils and the Earliest Life	101
		6.3.5 Isotopes in Hydrothermal and Ore Deposits	101
	6.4	Non-Traditional Isotopes in Geochemistry	102
		6.4.1 Application in Tracing of Source	102
		6.4.2 Application in Process Tracing	103
		6.4.3 Biological Cycling	104
	6.5	Conclusion	105
		References	105

7	Env	ironme	ental Geochemistry	111
	Sap	na Nehi	ra, Rekha Sharma and Dinesh Kumar	
	7.1	Introd	luction	111
	7.2	Overv	riew of the Environmental Geochemistry	112
	7.3	Concl	usions	120
	7.4	Abbre	viations	121
		Ackno	owledgment	121
		Refere	ences	121
8	Med	lical Ge	eochemistry	127
	Hos	am M.	Saleh and Amal I. Hassan	
	8.1	Introd	luction	128
	8.2	The E	volution of Geochemistry	129
	8.3	This S	cience has Expanded Considerably to Become	
		Distin	act Branches	129
		8.3.1	Cosmochemistry	131
		8.3.2	The Economic Importance of Geochemistry	131
		8.3.3		132
		8.3.4	Geochemistry of Radioisotopes	132
		8.3.5	Medical Geochemistry and Human Health	134
		8.3.6	Environmental Health and Safety	137
	8.4	Concl	lusion	142
		Refere	ences	143
9	Ino	rganic	Geochemistry	149
			n Pratheep Kumar, Triveni Rajashekhar Mandlima	ith
	and	M. Ra		
	9.1		duction	149
	9.2	Eleme	ents and the Earth	150
		9.2.1	Iron	150
		9.2.2	Oxygen	151
		9.2.3	Silicon	152
		9.2.4	Magnesium	152
	9.3		ogical Minerals	152
		9.3.1	Quartz	152
		9.3.2	Feldspar	153
		9.3.3		153
		9.3.4	Pyroxene	153
		9.3.5		153
		9.3.6	Clay Minerals	153
		9.3.7	Kaolinite	154

		9.3.8 Bentonite, Montmorillonite, Vermiculite,		
	and Biotite		nd Biotite	154
	9.4 Characterization Techniques			155
			owder X-Ray Diffraction	155
			X-Ray Fluorescence Spectra	156
			X-Ray Photoelectron Spectra	156
			Electron Probe Micro-Analysis	156
			nductively Coupled Plasma Spectrometry	157
			Sourier Transform Infrared Spectroscopy	157
		9.4.7 S	canning Electron Microscopy Analysis	158
			Energy Dispersive X-Ray Analysis	158
	9.5	Conclus		159
		Referen	ces	159
10	Intr	oduction	and Scope of Geochemistry	161
			hekhar Mandlimath, Sathasivam Pratheep Kumar	
		M. Rame		
	10.1			161
		10.1.1	Periodic Table and Electronic Configuration	162
			10.1.1.1 Periodic Table	162
			10.1.1.2 Electronic Configuration	164
	10.2		ic Properties	164
			Ionization Enthalpy	164
			Electron Affinity	165
			Electro-Negativity	166
	10.3		cal Bonding	166
			Ionic Bond	166
			Covalent Bond	166
			Metallic Bond	167
			Hydrogen Bond	167
			Van der Waals Forces	167
	10.4		emical Classification and Distribution	
		of Elen		167
		10.4.1	Lithophiles	167
			Siderophiles	168
			Chalcophiles	169
		10.4.4	1	169
		10.4.5	Biophiles	169
	10.5		cal Composition of the Earth	169
	10.6		ication of Earth's Layers	170
		10.6.1	Based on Chemical Composition	170

	10.6.2	Based on Physical Properties	170
10.7	Sphere	s of the Earth	171
	10.7.1	Geosphere/Lithosphere	171
	10.7.2	Hydrosphere	172
	10.7.3	Biosphere	172
	10.7.4	Atmosphere	172
	10.7.5	Troposphere	173
	10.7.6	Stratosphere	173
	10.7.7	Mesosphere	174
	10.7.8	Thermosphere and Ionosphere	174
	10.7.9	Exosphere	174
10.8	Sub-Di	sciplines of Geochemistry	175
10.9	Scope	of Geochemistry	175
10.10	Conclu	ision	176
	Referen	nces	176
dex			179