Contents

Foreword xiii

1	New Trends in the Design of Metal Nanoparticles and Derived
	Nanomaterials for Catalysis 1
	Alain Roucoux and Karine Philippot
1.1	Nanocatalysis: Position, Interests, and Perspectives 1
1.2	Metal Nanoparticles: What Is New? 4
1.3	Conclusions and Perspectives 8
	References 9
2	Introduction to Dynamic Catalysis and the Interface Between
	Molecular and Heterogeneous Catalysts 13
	Alexey S. Galushko, Alexey S. Kashin, Dmitry B. Eremin, Mikhail V. Polynski,
	Evgeniy O. Pentsak, Victor M. Chernyshev, and Valentine P. Ananikov
2.1	Introduction 13
2.2	Dynamic Catalysis 14
2.3	Interface Between Molecular and Heterogeneous Catalysts 17
2.3.1	Direct Observation of Nanoparticle Evolution by Electron
	Microscopy 17
2.3.2	Through the Interface - Detection of Molecular Species by Mass
	Spectrometry 19
2.3.3	Pervasiveness of Nanoparticles and the Problem of Catalytic
	Contamination 22
2.3.4	Computational Modeling of Dynamic Catalytic Systems 24
2.3.4.1	Equilibrium of Leaching and Recapture 24
2.3.4.2	Modeling Leaching, Recapture, and Transformations in Solution 25
2.3.5	Nanoparticle Catalysis in Solvent-Free and Solid-State Organic
	Reactions 27
2.3.6	Applications of the Mercury Test and Other Poisoning Techniques in the
	Nanoparticle Catalysis Studies 30
2.3.6.1	Catalyst Poisoning Techniques and Typical Poisons 30
2.3.6.2	Mercury Test 31

1	Contents
-	

2.3.6.3	Fundamental Limitations of the Catalyst Poisoning Techniques for Dynamic Systems 33
2.4	Summary and Conclusions 34
	References 36
	Part I Nanoparticles in Solution 43
3	Metal Nanoparticles in Water: A Relevant Toolbox for Green
	Catalysis 45
	Audrey Denicourt-Nowicki, Natalia Mordvinova, and Alain Roucoux
3.1	Introduction 45
3.2	Protection by Ligands 46
3.2.1	Hydrogenation Reactions 46
3.2.1.1	Phosphorous Ligands 46
3.2.1.2	Nitrogenated Ligands 47
3.2.1.3	Carbon Ligands 49
3.2.2	Suzuki–Miyaura Coupling Reactions 50
3.2.2.1	Nitrogenated Ligands 50
3.2.2.2	Carbonaceous and Phosphorous Ligands 51
3.3	Stabilization by Surfactants 51
3.3.1	Hydrogenation Reactions 52
3.3.2	Oxidation Reactions 56
3.3.3	Other Reactions 57
3.4	Stabilization by Polymers 58
3.4.1	Hydrogenation Reactions 58
3.4.2	Carbon–Carbon Coupling Reactions 64
3.4.3	Oxidation Reactions 66
3.5	Conclusions and Perspectives 67
	References 68
4	Organometallic Metal Nanoparticles for Catalysis 73 M. Rosa Axet and Karine Philippot
4.1	Introduction 73
4.2	Interests of the Organometallic Approach to Study Stabilizer Effect on
	Metal Surface Properties 74
4.3	Application of Organometallic Nanoparticles as Catalysts for Hydrogenation Reactions 78
4.3.1	Metal Nanoparticles Stabilized with Phosphorus Ligands 78
4.3.2	Metal Nanoparticles Stabilized with N-Heterocyclic Carbenes 80
4.3.3	Metal Nanoparticles Stabilized with Zwitterionic Ligands 82
4.3.4	Metal Nanoparticles Stabilized with Fullerenes 82
4.3.5	Metal Nanoparticles Stabilized with Carboxylic Acids 84
4.3.6	Metal Nanoparticles Stabilized with Miscellaneous Ligands 86
437	Bimetallic Nanoparticles 88

4.3.8	Supported Nanoparticles 90
4.4	Conclusions 94
	References 95
	是一个人,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就是一个人的,我们就
5	Metal Nanoparticles in Polyols: Bottom-up and Top-down
	Syntheses and Catalytic Applications 99
	Trung Dang-Bao, Isabelle Favier, and Montserrat Gómez
5.1	Introduction 99
5.2	Bottom-up Approach: Colloidal Synthesis in Polyols 100
5.2.1	Ethylene Glycol and Poly(ethylene glycol) 100
5.2.2	Glycerol 105
5.2.3	Carbohydrates 108
5.3	Top-down Approach: Sputtering in Polyols 113
	Summary and Conclusions 117
5.4	Acknowledgments 118
	References 118
6	Catalytic Properties of Metal Nanoparticles Confined in Ionic
	Liquids 123
	Muhammad I. Qadir, Nathália M. Simon, and Jairton Dupont
(1	Introduction 123
6.1	
6.2	Stabilization of Metal Nanoparticles in ILs 124
6.3	Synthesis of Soluble Metal Nanoparticles in ILs 125
6.4	Catalytic Application of NPs in ILs 126
6.4.1	Catalytic Hydrogenation of Aromatic Compounds 127
6.4.2	Coupling Reactions in ILs 130
6.4.3	Hydroformylation in ILs 132
6.4.4	Fischer–Tropsch Synthesis in ILs 133
6.4.5	Catalytic Carbon Dioxide Hydrogenation in ILs 133
6.5	Conclusions 134
	Acknowledgments 135
	References 135
	Authoric Strategies at Motal Stanopartities
	ver Cherafeat Reduction Method (1974)
	Part II Supported Nanoparticles 139
7	Nanocellulose in Catalysis: A Renewable Support Toward
	Enhanced Nanocatalysis 141
	Tony Jin and Audrey Moores
7.1	Introduction 141
7.2	
7.2.1	Nanocellulose-Based Catalyst Design and Synthesis 143
	Synthesis of Suspendable, CNC-Based Nanocatalysts 144
7.2.1.1	Unmodified CNCs as a Support for Metal NPs 144
7.2.1.2	Functionalized CNCs as a Support for Metal NPs 145
7.2.2	Nanocellulose-Based Solid Supports for Metal NPs 146
7.2.2.1	CNC-Embedded Supports 146

viii	Contents	
	7.2.2.2	Functionalized CNFs as a Support for Metal NPs 147
	7.2.2.3	Use of CNCs as a Source for Carbon Supports 147
	7.3	Organic Transformations Catalyzed by Metal NP/nanocellulose Hybrids 148
	7.3.1	C–C Coupling Reactions 148
	7.3.2	Reduction Reactions 151
	7.4	Conclusions 154
		References 154
	8	Magnetically Recoverable Nanoparticle Catalysts 159 Liane M. Rossi, Camila P. Ferraz, Jhonatan L. Fiorio, and Lucas L. R. Vond
	8.1	Introduction 159
	8.2	Magnetic Support Material 161
	8.2.1	Magnetite Coated with Silica 163
	8.2.2	Magnetite Coated with Sinea 165 Magnetite Coated with Ceria, Titania, and Other Oxides 165
	8.2.3	Magnetite Coated with Carbon-Based Materials 166
	8.3	Preparation of Magnetically Recoverable Metal Nanoparticle
		Catalysts 167
	8.3.1	Immobilization of Metal Precursors Before Reduction 167
	8.3.2	Decomposition of Organometallic Precursors 170
	8.3.3	Immobilization of Colloidal Nanoparticles 172
	8.3.4	Influence of Ligands on Catalytic Properties 173
	8.4	Summary and Conclusions 176
		References 176
	9	Synthesis of MOF-Supported Nanoparticles and Their Interest
		in Catalysis 183
		Guowu Zhan and Hua C. Zeng
	9.1	Introduction 183
	9.2	General Synthetic Methodologies 185
	9.2.1	Catalytic Properties of Metal Nanoparticles 185
	9.2.2	Synthetic Strategies of Metal Nanoparticles 187
	9.2.2.1	Wet Chemical Reduction Method 187
	9.2.2.2	Metal Vapor Condensation/Deposition Method 187
	9.2.2.3	Electrochemical Method 188
	9.2.2.4	Biosynthesis Method 188
	9.2.3	Catalytic Activity and Catalytic Sites of MOFs 188
	9.2.4	Porosity of MOFs for Catalysis Applications 189
	9.2.5	Synthetic Strategies of MOFs 190
	9.2.5.1	Electrochemical Method 191
	9.2.5.2	Sonochemical Method 191
	9.2.5.3	Microwave Irradiation Method 192

Mechanochemical Method 192

Microemulsion Method 193

Synthesis of MOFs in Green Solvents 192

9.2.5.4 9.2.5.5

9.2.5.6

0257	Transformation from Solid Matters to MOFs 193		
9.2.5.7	Integration Methods of MNPs with MOFs 194		
9.2.6	Preformation of MNPs and Growth of MOFs 195		
9.2.6.1	Incorporation of Metal Precursors Followed by in Situ Reduction 197		
9.2.6.2	One-pot Integration of MOFs and MNPs 199		
9.2.6.3	Architectural Designs and Catalytic Applications of MNP/MOF		
9.3	Nanocomposites 200		
021	Zero-Dimensional MNP/MOF Nanocomposites 201		
9.3.1	One-Dimensional MNP/MOF Nanocomposites 201		
9.3.2 9.3.3	Two-Dimensional MNP/MOF Nanocomposites 203		
9.3.4	Three-Dimensional MNP/MOF Nanocomposites 203		
9.3.4	Other Representative Structures of MNP/MOF Composites 205		
9.3.5.1	Core-Shell/Yolk-Shell Nanostructures 205		
9.3.5.2	Sandwich-like Nanostructures 206		
9.3.5.3	Formation of Nanoreactors with a Central Cavity 208		
9.4	Summary and Conclusions 208		
,,,	References 210		
10	Silica-Supported Nanoparticles as Heterogeneous		
	Catalysts 215		
	Mahak Dhiman, Baljeet Singh, and Vivek Polshettiwar		
10.1	Introduction 215		
10.2	Deposition Methods of Metal NPs 216		
10.2.1	Wet Impregnation Method 216		
10.2.2	Deposition–Precipitation Method 217		
10.2.3	Colloidal Immobilization Method 218		
10.2.4	Solid-State Grinding Method 219		
10.2.5	Postsynthetic Grafting Method 220		
10.3	Application of Silica-Supported NPs in Catalysis 221		
10.3.1	Oxidation Reactions 221		
10.3.1.1	CO Oxidation 221		
10.3.1.2	Alcohol Oxidation 222		
10.3.1.3	Hydrolysis of Silane 224		
10.3.2	Hydrogenation Reactions 226		
10.3.3	Carbon–Carbon (C–C) Coupling Reactions 230		
10.4	Conclusion 234		
	References 235		

Part III Application 239

11 CO₂ Hydrogenation to Oxygenated Chemicals Over Supported Nanoparticle Catalysts: Opportunities and Challenges 241 Qiming Sun, Zhenhua Zhang, and Ning Yan

11.1 Introduction 241

X	Contents

11.2	CO ₂ Hydrogenation into Formic Acid 242
11.3	CO ₂ Hydrogenation to Methanol 247
11.4	CO ₂ Hydrogenation to Dimethyl Ether 250
11.5	Perspectives and Conclusion 252
	Acknowledgment 253
	References 253
12	Rebirth of Ruthenium-Based Nanomaterials for the Hydrogen
	Evolution Reaction 257
	Nuria Romero, Jordi Creus, Jordi García-Antón, Roger Bofill, and
	Xavier Sala
12.1	Introduction 257
12.2	Relevant Figures of Merit 258
12.3	Factors Ruling the Performance of Ru-Based NPs in HER
	Electrocatalysis 261
12.3.1	Surface Composition 262
12.3.2	Phase Structure and Degree of Crystallinity 265
12.3.3	Influence of the C Matrix or the C-Based Support 266
12.3.4	Influence of Heteroatoms 270
12.3.4.1	Phosphorous 270
12.3.4.2	Metals and Semimetals 272
12.4	Factors Ruling the Performance of Ru-Based NPs in HER
	Photocatalysis 272
12.5	Summary and Conclusions 274
	Acknowledgments 275
	References 275
13	Nanocatalytic Architecture for the Selective Dehydrogenation
	of Formic Acid 279
	Ismail B. Baguc, Gulsah S. Kanberoglu, Mehmet Yurderi, Ahmet Bulut,
	Metin Celebi, Murat Kaya, and Mehmet Zahmakiran
13.1	Introduction 279
13.2	Monometallic Palladium-Based Nanocatalysts 282
13.3	Bimetallic Palladium-Based Nanocatalysts 286
13.3.1	Bimetallic Pd-Containing Nanocatalysts in the Physical Mixture
	Form 286
13.3.2	Bimetallic Pd-Containing Nanocatalysts in the Alloy Structure
	287
13.3.3	Bimetallic Pd-Containing Nanocatalysts in the Core@Shell
	Structure 291
13.3.4	Trimetallic Pd-Containing Nanocatalysts 294
13.3.5	Other Pd-Free Nanocatalysts 297
13.4	Summary and Conclusions 301
	Acknowledgments 302
	References 302

Part IV Activation and Theory 307

14	Magnetically Induced Nanocatalysis for Intermittent Energy Storage: Review of the Current Status and Prospects 309
	Julien Marbaix, Nicolas Mille, Julian Carrey, Katerina Soulantica, and Bruno Chaudret
14.1	Introduction 309
14.2	General Context and Historical Aspects 310
14.3	Characteristics of the Nanocatalysts Used in Magnetic
	Hyperthermia 312
14.3.1	Metal Oxide Nanomaterials 312
14.3.2	Iron (0) Nanoparticles 312
14.3.3	Iron Carbide Fe(C) Nanomaterials 312
14.3.4	Bimetallic FeNi Nanoparticles 313
14.3.5	Bimetallic FeCo Nanoparticles 313
14.3.6	CoNi Nanoparticles 314
14.4	Catalytic Applications in Liquid Solution and Gas Phase 314
14.4.1	Gas-Phase Catalysis 314
14.4.1.1	Catalysis Activated by Magnetically Heated Micro- and Macroscaled Materials 314
14.4.1.2	Catalysis Activated by Magnetic Heating of Nanoparticles 316
14.4.2	Catalytic Reactions in Solution 318
14.5	Perspectives 322
14.5.1	Stability of the Catalytic Bed During Catalysis by Magnetic Heating 322
14.5.2	Thermal Management and Process Chemistry Using Magnetic Heating for Catalytic Applications 322
14.6	Perspective of the Integration for Renewable Energy Use 323
14.6.1	Interest of Power to Gas and Catalysis Using Magnetic Heating for Renewable Energy Use 323
14.6.2	Energy Efficiency and Environmental Considerations of Catalysis by
	Magnetic Heating 324
14.7	Conclusion 326
	References 327
15	Sabatier Principle and Surface Properties of Small Ruthenium
	Nanoparticles and Clusters: Case Studies 331
151	Iker del Rosal and Romuald Poteau
15.1	Introduction 331
15.2	C-H Activation and H/D Isotopic Exchange in Amino Acids and
15.2.1	Derivatives 333
15.2.1	Reference Activation and Dissociation Energies 333
	H/D Exchange Mechanism 334
15.2.3	Bare Cluster 336
15.2.4	Ru ₁₃ D ₁₉ 338
15.2.5	$Ru_{13}D_n$, $n = 6-17$ 338

15.2.6	Short Discussion 338
15.3	Hydrogen Evolution Reaction 340
15.3.1	Introduction 340
15.3.2	4-Phenylpyridine-Protected RuNPs 341
15.3.3	Optimal Ligands for the HER? 344
15.4	Summary 346
15.5	Computational Details 347
	Acknowledgments 348
	References 348

Index 353