CONTENTS

	ntributors face	xi xili
1.	The Kinetics and Mechanism of Complex Redox Reactions in Aqueous Solution: The Tools of the Trade Mária Szabó, Gábor Bellér, József Kalmár, and István Fábián	1
	 Introduction General Considerations Selected Reactions of Oxychlorine Species Kinetics of the Oxidation Reactions of Peroxo Compounds The Photon as a Reactant Selected Kinetic Studies on Heterogeneous Systems Concluding remarks Acknowledgments References 	2 3 6 22 35 49 55 57 57
2.	O-O Bond Activation in Cu- and Fe-Based Coordination Complexes: Breaking It Makes the Difference Joan Serrano-Plana, Anna Company, and Miquel Costas	63
	 Introduction Modeling Tyrosinase: O–O Cleavage in Dinuclear Copper Systems O–O Cleavage in Iron-Oxygen Species Summary References 	64 67 79 99 100
3.	μ-Nitrido Diiron Phthalocyanine and Porphyrin Complexes: Unusual Structures With Interesting Catalytic Properties Alexander B. Sorokin	107
	 Introduction Preparation and Spectroscopic Characterization of µ-Nitrido Diiron Macrocyclic Complexes High-Valent Diiron-Oxo Species and Their Spectroscopic Characterization Catalytic Properties Conclusion and Outlook Acknowledgments References 	108 111 122 128 160 162 162

vii

4.	The Role of Nonheme Transition Metal-Oxo, -Peroxo, and -Superoxo Intermediates in Enzyme Catalysis and Reactions	
	of Bioinspired Complexes	167
	Abayomi S. Faponle and Sam P. de Visser	
	1. Introduction	168
	2. Metal-(Di)oxygen Intermediates	173
	3. Conclusions	190
	Acknowledgments	190
	References	190
5.	Diarylplatinum(II) Scaffolds for Kinetic and Mechanistic	
	Studies on the Formation of Platinacycles via an Oxidative	
	Addition/Reductive Elimination/Oxidative Addition Sequence	195
	Gabriel Aullón, Margarita Crespo, Jesús Jover, and Manuel Martínez	
	1. Introduction	196
	2. Compounds	198
	3. Kinetic Studies	206
	4. Synergy With DFT Calculations	221
	5. Concluding Remarks	239
	Acknowledgments	240
	References	240
6.	Controlling the Lability of Square-Planar Pt(II) Complexes	
	Through Electronic and π -Conjugation: Correlation Between	
	Kinetics and Theoretical Parameters	243
	Allen Mambanda and Deogratius Jaganyi	
	1. Introduction	244
	2. Pull-and-Push Effects of Pt(II) Complexes With Coordinated N^C/N^N/C	
	π -Acceptor Nonleaving Ligands	252
	3. Conclusions	272
	Acknowledgments	274
	References	274
7.	Thionitrous Acid/Thionitrite and Perthionitrite Intermediates	
	in the "Crosstalk" of NO and H ₂ S	277
	Juan P. Marcolongo, Ari Zeida, Leonardo D. Slep, and José A. Olabe	
	1. Introduction	278
	2. S-Nitrosothiols, RSNOs, A Brief Overview on Structure and Reactivity	280

Co	nt	e	nt	S

	3.	Thionitrous Acid HSNO and Thionitrite SNO ⁻ , Elusive Aqueous	
		Intermediates	282
	4.	Polysulfides and Sulfur Sols	287
	5.	Perthionitrite, S ₂ NO ⁻ . Identification of I _{vellow}	288
	6.	Coordination Chemistry of Nitrosothiols, Thionitrous Acid,	
		Thionitrite, and Perthionitrite	295
	7.	Conclusions	306
	Ack	nowledgments	306
	Refe	erences	306
8.	Cor	nputational Insights Into the Reactivity at the Sulfur	
	Ato	oms of M_3S_4 (M = Mo, W) Clusters: The Mechanism of $[3+2]$	
	Сус	loaddition With Alkynes	311
	And	Irés G. Algarra and Manuel G. Basallote	
	1.	Introduction: The Reactivity of M_3S_4 (M = Mo, W) Clusters	312
	2.	Experimental and Computational Methods	320
	3.	Kinetics and Mechanistic Studies on the [3+2] Cycloaddition Reaction	
		Between M ₃ S ₄ Clusters and Alkynes	322
	4.	Conclusions and Outlook	339
	Ack	nowledgments	340
	Refe	erences	340
9.		active Oxygen Species in Photodynamic Therapy:	
	Me	chanisms of Their Generation and Potentiation	343
	Jan	usz M. Dąbrowski	
	1.	Introduction	344
	2.	Redox Homeostasis in Cells	346
	3.	Photodynamic Therapy	348
	4.	Penetration Depth	349
	5.	ROS-Generating Systems for PDT	351
	6.	ROS Generation Mechanisms	355
	7.	Subcellular Localization of Photosensitizers in Cells	362
	8.	ROS-Mediated Biological Mechanisms	366
	9.	Methods of ROS Detection in PDT	372
	10.	Strategies to Enhance ROS Generation in PDT	378
	11.	Summary	384
	Ack	nowledgments	386
	Refe		386

ix

429

as	rmic Acid as a Hydrogen Carrier for Fuel Cells Toward Sustainable Energy System	etni 3
Haj	ime Kawanami, Yuichi Himeda, and Gábor Laurenczy	
1.	Introduction	
2.	Liquid Organic Hydrogen Carriers	
3.	Recent Organic Materials for LOHC	
4.	Formic Acid for LOHC	
5.	Homogeneous Catalytic Dehydrogenation of Formic Acid	
6.	Cp* With Iridium Complex for H ₂ Generation From Formic Acid	
7.	High-Pressure H ₂ Generation	
8.	Application for Fuel Cell Batteries	
9.	Conclusion	
Ref	erences	

Index

х