Contents | 1 | Ge | ometry and Complex Arithmetic | | | | | | |---|-----|--|--|--|--|--|--| | | 1 | Introduction Historical Sketch Bombelli's "Wild Thought" Some Terminology and Notation Practice Symbolic and Geometric Arithmetic | 1
1
3
6
7
8 | | | | | | | | Euler's Formula Introduction Moving Particle Argument Power Series Argument Sine and Cosine in Terms of Euler's Formula | 10
10
10
12
14 | | | | | | | 111 | Some Applications Introduction Trigonometry Geometry Calculus Algebra Vectorial Operations | 14
14
14
16
20
22
27 | | | | | | | IV | Transformations and Euclidean Geometry* Geometry Through the Eyes of Felix Klein Classifying Motions Three Reflections Theorem Similarities and Complex Arithmetic Spatial Complex Numbers? | 30
30
34
37
39
43 | | | | | | | ٧ | Exercises | 45 | | | | | | 2 | Co | mplex Functions as Transformations | 55 | | | | | | | 1 | Introduction | 55 | | | | | | | 11 | Polynomials 1 Positive Integer Powers 2 Cubics Revisited* 3 Cassinian Curves* | 57
57
59
60 | | | | | | | Ш | Power Series The Mystery of Real Power Series The Disc of Convergence | 64
64
67 | | | | | ## xvi Contents | | | Approximating a Power Series with a Polynomial Uniqueness Manipulating Power Series Finding the Radius of Convergence Fourier Series* | 70
71
72
74
77 | |---|------|---|--| | | IV | The Exponential Function Power Series Approach The Geometry of the Mapping Another Approach | 79
79
80
81 | | | V | Cosine and Sine Definitions and Identities Relation to Hyperbolic Functions The Geometry of the Mapping | 84
84
86
88 | | | VI | Multifunctions Example: Fractional Powers Single-Valued Branches of a Multifunction Relevance to Power Series An Example with Two Branch Points | 90
90
92
95
96 | | | VII | The Logarithm Function Inverse of the Exponential Function The Logarithmic Power Series General Powers | 98
98
100
101 | | | VIII | Averaging over Circles* 1 The Centroid 2 Averaging over Regular Polygons 3 Averaging over Circles | 102
102
105
108 | | | IX | Exercises | 111 | | 3 | Möl | oius Transformations and Inversion | 122 | | | I | Introduction 1 Definition of Möbius Transformations 2 Connection with Einstein's Theory of Relativity* 3 Decomposition into Simple Transformations | 122
122
122
123 | | | 11 | Inversion Preliminary Definitions and Facts Preservation of Circles Construction Using Orthogonal Circles Preservation of Angles Preservation of Symmetry Inversion in a Sphere | 124
124
126
128
130
133 | | | 111 | Three Illustrative Applications of Inversion 1 A Problem on Touching Circles 2 Quadrilaterals with Orthogonal Diagonals 3 Ptolemy's Theorem | 136
136
137
138 | | | | | Contents | xvii | |---|------|--|----------|--| | | IV | The Riemann Sphere 1 The Point at Infinity 2 Stereographic Projection 3 Transferring Complex Functions to the Sphere 4 Behaviour of Functions at Infinity 5 Stereographic Formulae* | | 139
139
140
143
144
146 | | | V | Möbius Transformations: Basic Results 1 Preservation of Circles, Angles, and Symmetry 2 Non-Uniqueness of the Coefficients 3 The Group Property 4 Fixed Points 5 Fixed Points at Infinity 6 The Cross-Ratio | | 148
149
150
151
152
154 | | | VI | Möbius Transformations as Matrices* Evidence of a Link with Linear Algebra The Explanation: Homogeneous Coordinates Eigenvectors and Eigenvalues* Rotations of the Sphere* | | 156
156
157
158
161 | | | VII | Visualization and Classification* The Main Idea Elliptic, Hyperbolic, and Loxodromic types Local Geometric Interpretation of the Multiplier Parabolic Transformations Computing the Multiplier* Eigenvalue Interpretation of the Multiplier* | | 162
164
166
168
169
170 | | | VIII | Decomposition into 2 or 4 Reflections* Introduction Elliptic Case Hyperbolic Case Parabolic Case Summary | | 172
172
172
173
174
175 | | | IX | Automorphisms of the Unit Disc* Counting Degrees of Freedom Finding the Formula via the Symmetry Principle Interpreting the Formula Geometrically* Introduction to Riemann's Mapping Theorem | | 176
176
177
178
180 | | | Х | Exercises | | 181 | | 4 | Diff | erentiation: The Amplitwist Concept | | 189 | | | 1 | Introduction | | 189 | | | II | A Puzzling Phenomenon | | 189 | | | 111 | Local Description of Mappings in the Plane Introduction The Jacobian Matrix The Amplitwist Concept | | 191
191
192
193 | ## xviii Contents | | IV | The Complex Derivative as Amplitwist The Real Derivative Re-examined The Complex Derivative Analytic Functions A Brief Summary | 194
194
195
197
198 | |---|------|--|---------------------------------| | | V | Some Simple Examples | 199 | | | VI | Conformal = Analytic Introduction Conformality Throughout a Region Conformality and the Riemann Sphere | 200
200
201
203 | | | VII | Critical Points Degrees of Crushing Breakdown of Conformality Branch Points | 204
204
205
206 | | | VIII | The Cauchy-Riemann Equations Introduction The Geometry of Linear Transformations The Cauchy-Riemann Equations | 207
207
208
209 | | | IX | Exercises | 211 | | 5 | Fur | ther Geometry of Differentiation | 216 | | | 1 | Cauchy-Riemann Revealed Introduction The Cartesian Form The Polar Form | 216
216
216
217 | | | II | An Intimation of Rigidity | 219 | | | | Visual Differentiation of log(z) | 222 | | | IV | Rules of Differentiation Composition Inverse Functions Addition and Multiplication | 223
223
224
225 | | | V | Polynomials, Power Series, and Rational Functions Polynomials Power Series Rational Functions | 226
226
227
228 | | | VI | Visual Differentiation of the Power Function | 229 | | | VII | Visual Differentiation of exp(z) | 231 | | | VIII | Geometric Solution of E' = E | 232 | | | IX | An Application of Higher Derivatives: Curvature* 1 Introduction | 234
234 | | | | | | Contents | xix | |---|-----|--|---|----------|---| | | | 2 3 | Analytic Transformation of Curvature
Complex Curvature | | 235
238 | | | X | Celes
1
2
3
4
5
6 | Central Force Fields Two Kinds of Elliptical Orbit Changing the First into the Second The Geometry of Force An Explanation The Kasner–Arnol'd Theorem | | 241
241
241
243
244
245
246 | | | XI | Analy
1
2
3
4
5 | rtic Continuation* Introduction Rigidity Uniqueness Preservation of Identities Analytic Continuation via Reflections | | 247
247
249
250
251
252 | | | XII | Exerc | cises | | 258 | | 6 | Nor | -Eucl | idean Geometry* | | 267 | | | | Introd
1
2
3
4
5
6
7 | The Parallel Axiom Some Facts from Non-Euclidean Geometry Geometry on a Curved Surface Intrinsic versus Extrinsic Geometry Gaussian Curvature Surfaces of Constant Curvature The Connection with Möbius Transformations | | 267
267
269
270
273
273
275
277 | | | II | Sphe 1 2 3 4 5 | The Angular Excess of a Spherical Triangle Motions of the Sphere A Conformal Map of the Sphere Spatial Rotations as Möbius Transformations Spatial Rotations and Quaternions | | 278
278
279
283
286
290 | | | III | Hype
1
2
3
4
5
6
7
8
9
10
11
12
Exerc | The Tractrix and the Pseudosphere The Constant Curvature of the Pseudosphere* A Conformal Map of the Pseudosphere Beltrami's Hyperbolic Plane Hyperbolic Lines and Reflections The Bolyai-Lobachevsky Formula* The Three Types of Direct Motion Decomposition into Two Reflections The Angular Excess of a Hyperbolic Triangle The Poincaré Disc Motions of the Poincaré Disc The Hemisphere Model and Hyperbolic Space | | 293
293
295
296
298
301
305
306
311
313
315
319
322 | | | IV | Exer | cises | | 328 | | 7 | Win | ding Numbers and Topology | 338 | |---|------|---|--| | | 1 | Winding Number The Definition What does "inside" mean? Finding Winding Numbers Quickly | 338
338
339
340 | | | 11 | Hopf's Degree Theorem 1 The Result 2 Loops as Mappings of the Circle* 3 The Explanation* | 341
341
342
343 | | | Ш | Polynomials and the Argument Principle | 344 | | | IV | A Topological Argument Principle* Counting Preimages Algebraically Counting Preimages Geometrically Topological Characteristics of Analyticity A Topological Argument Principle Two Examples | 346
346
347
349
350
352 | | | V | Rouché's Theorem The Result The Fundamental Theorem of Algebra Brouwer's Fixed Point Theorem* | 353
353
354
354 | | | VI | Maxima and Minima Maximum-Modulus Theorem Related Results | 355
355
357 | | | VII | The Schwarz-Pick Lemma* 1 Schwarz's Lemma 2 Liouville's Theorem 3 Pick's Result | 357
357
359
360 | | | VIII | The Generalized Argument Principle Rational Functions Poles and Essential Singularities The Explanation* | 363
363
365
367 | | | IX | Exercises | 369 | | 8 | Cor | mplex Integration: Cauchy's Theorem | 377 | | | 1 | Introduction | 377 | | | 11 | The Real Integral The Riemann Sum The Trapezoidal Rule Geometric Estimation of Errors | 378
378
379
380 | | | 111 | The Complex Integral Complex Riemann Sums A Visual Technique A Useful Inequality | 383
383
386
386 | | | | Contents | xxi | |------|---|----------|------------| | | | | | | | 4 Rules of Integration | | 387 | | IV | Complex Inversion | | 388 | | | 1 A Circular Arc
2 General Loops | | 388 | | | 3 Winding Number | | 391 | | V | Conjugation | | 392 | | | 1 Introduction | | 392 | | | 2 Area Interpretation 3 General Loops | | 393
395 | | VI | Power Functions | | 395 | | | 1 Integration along a Circular Arc | | 395 | | | Complex Inversion as a Limiting Case* General Contours and the Deformation Theorem | | 397 | | | General Contours and the Deformation Theorem A Further Extension of the Theorem | | 397
399 | | | 5 Residues | | 400 | | VII | The Exponential Mapping | | 401 | | VIII | The Fundamental Theorem | | 402 | | | 1 Introduction2 An Example | | 402
403 | | | 3 The Fundamental Theorem | | 404 | | A | The Integral as Antiderivative | | 406 | | IV | 5 Logarithm as Integral | | 408 | | IX | Parametric Evaluation | | 409 | | X | Cauchy's Theorem Some Preliminaries | | 410
410 | | | 2 The Explanation | | 412 | | XI | The General Cauchy Theorem | | 414 | | | 1 The Result | | 414 | | | The ExplanationA Simpler Explanation | | 415
417 | | XII | The General Formula of Contour Integration | | 418 | | XIII | Exercises | | 420 | | XIII | LACIOIGGS | | 420 | | Cau | chy's Formula and Its Applications | | 427 | | 1 | Cauchy's Formula | | 427 | | | 1 Introduction2 First Explanation | | 427
427 | | | 3 Gauss' Mean Value Theorem | | 429 | | | 4 General Cauchy Formula | | 429 | Infinite Differentiability and Taylor Series Infinite Differentiability Taylor Series Calculus of Residues 431 431 432 434 9 oc II S 111 2 ## xxii Contents | | | 2 A Formula3 Application4 Calculating | eries Centred at a Pole for Calculating Residues to Real Integrals Residues using Taylor Series to Summation of Series | 434
435
436
438
439 | |----|-----|--|--|---| | | IV | Annular Laurei 1 An Exampl 2 Laurent's T | e | 442
442
442 | | | V | Exercises | | 446 | | 10 | Vec | or Fields: Ph | ysics and Topology | 450 | | | 1 | 2 Physical Ve | functions as Vector Fields
ector Fields
Force Fields
nd Sinks | 450
450
451
453
454 | | | II | 1 The Index | pers and Vector Fields* of a Singular Point According to Poincaré Theorem | 456
456
459
460 | | | Ш | 2 Defining th | ed Surfaces*
n of the Poincaré-Hopf Theorem
e Index on a Surface
ation of the Poincaré-Hopf Theorem | 462
462
464
465 | | | IV | Exercises | | 468 | | 11 | Vec | or Fields and | Complex Integration | 472 | | | I | 4 Divergence | and Local Work
e and Curl in Geometric Form*
e-Free and Curl-Free Vector Fields | 472
472
474
476
478
479 | | | H | | ration in Terms of Vector Fields
Vector Field | 481
481 | | | III | 4 Example: \(\) 5 Local Beha 6 Cauchy's F 7 Positive Po 8 Negative P 9 Multipoles | Area as Flux Winding Number as Flux aviour of Vector Fields* Formula owers Powers and Multipoles at Infinity Geries as a Multipole Expansion | 483
484
485
486
488
489
490
492
493 | | | | | | Contents | xxiii | |-----|------|---|--|----------|---| | | | 2 The 3 The 4 The 5 The | oduction Stream Function Gradient Field Potential Function Complex Potential | | 494
494
497
498
500
503 | | | IV | Exercise | S | | 505 | | 12 | Flov | vs and H | armonic Functions | | 508 | | | I | | c Duals
al Flows
monic Duals | | 508
508
511 | | | H | 1 Cor
2 Cor | al Invariance nformal Invariance of Harmonicity nformal Invariance of the Laplacian Meaning of the Laplacian | | 513
513
515
516 | | | 111 | A Power | ful Computational Tool | | 517 | | | IV | 1 Sor
2 The
3 Fur | nplex Curvature Revisited* me Geometry of Harmonic Equipotentials c Curvature of Harmonic Equipotentials ther Complex Curvature Calculations ther Geometry of the Complex Curvature | | 520
520
520
523
525 | | | V | 1 Intr
2 An
3 The | ound an Obstacle oduction Example Method of Images pping One Flow Onto Another | | 527
527
527
532
538 | | | VI | 1 Intr
2 Ext
3 Inte
4 Inte
5 An | sics of Riemann's Mapping Theoren oduction erior Mappings and Flows Round Obstacles erior Mappings and Dipoles erior Mappings, Vortices, and Sources Example: Automorphisms of the Disc een's Function | n | 540
540
541
544
546
549
550 | | | VII | 1 Intr
2 Sch
3 Diri
4 The | s Problem oduction nwarz's Interpretation chlet's Problem for the Disc e Interpretations of Neumann and Bôcher een's General Formula | | 554
554
556
558
560
565 | | | VIII | Exercise | S | | 570 | | Re | fere | nces | | | 573 | | Inc | lex | | | | 579 |