

BIOLOGY IN CONTEXT

for Cambridge International AS & A Level

Second edition

Authors

Glen and Susan Toole
Stephanie Fowler

Biology in Context for Cambridge International AS & A Level directly matches the latest syllabus, supporting comprehensive understanding of key scientific concepts. A stretching approach focuses on the development of advanced skills, for strong assessment potential.

- Fully prepare for exams – comprehensive coverage of the course
- Develop advanced skills – critical thinking and practical skills extend performance
- Progress to the next stage – extension material eases the transition to university study

Empowering every learner to succeed and progress

- ✓ Complete Cambridge syllabus match
- ✓ Comprehensive exam preparation
- ✓ Reviewed by subject specialists
- ✓ Embedded critical thinking skills
- ✓ Progression to the next educational stage

Also available:
978 0 19 839618 5

978 0 19 839962 9

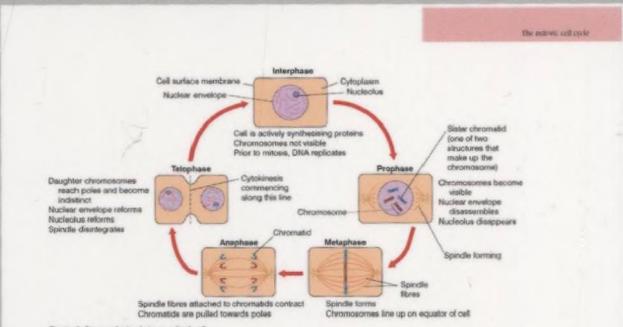
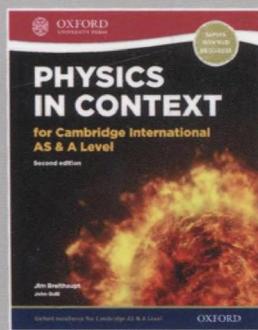
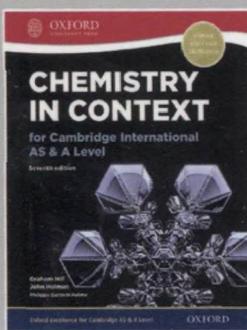




Figure 2 Stages of mitosis in an animal cell

Differences between mitosis in plant and animal cells

Centrioles are found in the cells of animals and some lower plants. However, they are absent from the cells of higher plants, although they still form spindles. Mitosis can still occur in animal cells that have had the centrioles removed, but not always with successful results.

In animal cells, cytokinesis occurs by the constriction of the centre of the parent cell from the outside inwards (see the telophase stage in Figure 2). In plant cells, division occurs by the growth of a cell plate across the equator of the parent cell, from the centre outwards. Cellulose is laid down on this plate to form the cell wall.

In plants, mitosis occurs in a specialised tissue known as meristematic tissue. Plant meristems occur in the growing regions, for example in root and shoot tips and in the cambium of stems and roots (Topic 7.3). In animals, stem cells are able to divide by mitosis. Stem cells occur where there is a requirement for growth, tissue repair and cell replacement (Topic 5.3).

REMEMBER
The replication of DNA takes place during interphase before the nucleus and cell divide.

THE PRACTICAL SKILLS SECTION ON THE ACCOMPANYING CD COVER TEMPORARILY REQUIRES PREPARATION AND DISCUSSES HOW TO MAKE HIGH-POWERED DRAWINGS OF CELLS IN STAGES OF MITOSIS.

EXTENSION
In animal cells, the pair of centrioles are replicated before the start of mitosis. The centriole in the area containing the centrioles is called the centriole and the other is called the centriole. During prophase, the centriole divides so that each centriole pair moves to the opposite poles of the cell and the centriole disappears. In plant cells that have the centrioles removed can still form a spindle, but not always with successful results. Plant cells do not have microtubules but do have microtubule organising centres (MOCs) that perform the same role as the centrioles containing the centrioles in animal cells.

OXFORD
UNIVERSITY PRESS

How to get in contact:

web www.oxfordsecondary.com/cambridge
email schools.enquiries.uk@oup.com
tel +44 (0)1536 452620
fax +44 (0)1865 313472

ISBN 978-0-19-839959-9

9 780198 399599

PART 1 AS LEVEL

Chapter 1 Cell structure

1.1	The microscope in cell studies	2
1.2	The light microscope	4
1.3	The electron microscope	6
1.4	Microscopic measurements and calculations	8
1.5	Cell structure	10
1.6	Nucleus, chloroplast and mitochondria	12
1.7	Endoplasmic reticulum and ribosomes, Golgi body and lysosomes	14
1.8	Cell surface membrane, cilia and centrioles	16
1.9	Prokaryotic cells	18
	Examination and Practice Questions	20

Chapter 2 Biological molecules

2.1	Introduction to biological molecules	22
2.2	Carbohydrates – monosaccharides and disaccharides	24
2.3	Carbohydrates – starch and glycogen	26
2.4	Carbohydrates – cellulose	28
2.5	Lipids	30
2.6	Amino acids and polypeptides	32
2.7	Protein structure	34
2.8	Fibrous and globular proteins	36
2.9	Water and its functions	38
	Examination and Practice Questions	40

Chapter 3 Enzymes

3.1	Enzyme structure and mode of action	42
3.2	Effect of temperature and pH on enzyme action	44
3.3	Effect of enzyme and substrate concentration on enzyme action	46
3.4	Enzyme inhibition	48
	Examination and Practice Questions	50

Chapter 4 Cell membranes and transport

4.1	Cell surface membrane	52
4.2	Diffusion	54
4.3	Osmosis	56
4.4	Osmosis and cells	58
4.5	Active transport, endocytosis and exocytosis	60
	Examination and Practice Questions	62

Chapter 5 The mitotic cell cycle

5.1	Chromosomes and the cell cycle	64
5.2	Chromosome behaviour in mitosis	66
5.3	The importance of mitosis	68
	Examination and Practice Questions	70

Chapter 6 Nucleic acids and protein synthesis

6.1	Nucleotides and ribonucleic acid (RNA)	72
6.2	Deoxyribonucleic acid (DNA)	74
6.3	DNA replication	76
6.4	Evidence for semi-conservative DNA replication	78
6.5	The genetic code	80
6.6	Protein synthesis – transcription	82
6.7	Protein synthesis – translation	84
	Examination and Practice Questions	86

Chapter 7 Transport in plants

7.1	The need for transport systems in organisms	88
7.2	Exchanges between organisms and their environment	90
7.3	Distribution of vascular tissues in dicotyledonous plants	92
7.4	Structure and function of xylem	94
7.5	Uptake of water and transport across roots	96
7.6	Movement of water up the stem and across the leaf	98
7.7	Transpiration	100
7.8	Xerophytes	102
7.9	Structure and function of phloem	104
7.10	Translocation of organic molecules in plants	106
	Examination and Practice Questions	108

Chapter 8 Transport in mammals

8.1	Arteries, veins and capillaries	110
8.2	The structure and functions of blood	114
8.3	Tissue fluid and lymph	116
8.4	Transport of oxygen	118
8.5	Transport of carbon dioxide	120
8.6	Transport of oxygen at high altitude	122
8.7	Structure of the heart	124
8.8	The cardiac cycle	126
8.9	Control of the cardiac cycle	128
8.10	Blood pressure and pulse	130
	Examination and Practice Questions	132

Chapter 9 Gas exchange and smoking

9.1	Human gas exchange system	134
9.2	Gas exchange in the alveoli	136
9.3	Tobacco smoke and its effects on gas exchange	138
9.4	Pulmonary diseases and smoking	140
9.5	Cardiovascular disease and smoking	142
9.6	Drug (substance) abuse	144
9.7	Obesity	146
9.8	Exercise – its effects and consequences	148
	Examination and Practice Questions	150

Chapter 10 Infectious disease

10.1	Health and disease	152
10.2	Types of disease	154
10.3	Health statistics	156
10.4	Cholera	158
10.5	Malaria	160
10.6	Tuberculosis (TB)	162
10.7	Acquired immune deficiency syndrome (AIDS)	164
10.8	Measles, smallpox and dengue fever	166
10.9	Antibiotics	168
	Examination and Practice Questions	170

Chapter 11 Immunity

11.1	Defence against disease and phagocytosis	172
11.2	Principles of immunity – antigens and antibodies	174
11.3	Monoclonal antibodies	176
11.4	B lymphocytes and humoral immunity	178
11.5	T lymphocytes and cell-mediated immunity	180
11.6	Types of immunity and vaccination	182
11.7	Control of disease by vaccination	184
	Examination and Practice Questions	186

PART 2 A LEVEL**Chapter 12 Energy and respiration**

12.1	Energy	188
12.2	Adenosine triphosphate (ATP)	190
12.3	Respiration – glycolysis	192
12.4	Link reaction and Krebs cycle	194
12.5	Oxidative phosphorylation	196
12.6	Anaerobic respiration and energy yields	198
12.7	Measurement of respiration and respiratory quotients	200
	Examination and Practice Questions	202

Chapter 13 Photosynthesis

13.1	An overview of photosynthesis	204
13.2	Adaptations to photosynthesis – leaf and chloroplast structure	206
13.3	Chloroplast pigments and light harvesting	208
13.4	Photosynthesis – the light-dependent reaction	210
13.5	Photosynthesis – the light-independent reaction	212
13.6	Environmental factors affecting photosynthesis	214
13.7	Adaptations to photosynthesis – C4 plants	216
	Examination and Practice Questions	218

Chapter 14 Homeostasis

14.1	Coordination and homeostasis	220
14.2	Excretion and kidney structure	222
14.3	The structure of the nephron	224
14.4	Kidney function – ultrafiltration and selective reabsorption	226
14.5	Kidney function – loop of Henlé and reabsorption of water	228
14.6	Control of water and solute concentration of the blood	230
14.7	Hormones and the endocrine glands	232
14.8	Regulation of blood glucose	234
14.9	Biosensors	236
14.10	Homeostasis in plants	238
	Examination and Practice Questions	240

Chapter 15 Control and Coordination

15.1	Nervous communication and neurones	242
15.2	Sensory receptors	244
15.3	The reflex arc	246
15.4	The nerve impulse	248
15.5	Transmission of impulses along a neurone	250
15.6	Speed of nerve impulse transmission	252
15.7	Structure and function of synapses	254
15.8	Synaptic transmission	256
15.9	Striated muscle	258
15.10	Muscle contraction 1	260
15.11	The menstrual cycle	264
15.12	The contraceptive pill	266
15.13	Control and coordination in plants	268
	Examination and Practice Questions	270

Chapter 16 Inherited change

16.1	The role of meiosis	272
16.2	Meiosis	274
16.3	Meiosis and genetic variation	276

16.4	Genetics – the study of inheritance	278
16.5	Monohybrid inheritance	280
16.6	The test cross	282
16.7	Codominance and multiple alleles	284
16.8	Dihybrid inheritance	286
16.9	Sex determination, sex linkage and autosomal linkage	288
16.10	Gene interaction	290
16.11	The chi-squared (χ^2) test	292
16.12	Mutations	294
16.13	Effects of mutant alleles on the phenotype	296
16.14	Gene control – control of protein synthesis	298
16.15	Gene control – regulation of transcription	300
	Examination and Practice Questions	302

19.1	Identifying and isolating genes	360
19.2	DNA cloning – the polymerase chain reaction	362
19.3	Insertion of DNA fragment into a vector	364
19.4	Uptake of the plasmid vector by the host bacterium	366
19.5	Treating disease with proteins produced by DNA recombinant techniques	368
19.6	Ethical and social implications of genetic technology	370
19.7	Bioinformatics	372
19.8	Genetic fingerprinting	374
19.9	Gene therapy	376
19.10	Genetic screening and counselling	380
19.11	Genetically modified organisms in agriculture	382
	Examination and Practice Questions	384

Chapter 17 Biotechnology

17.1	Variation	304
17.2	Environment and phenotype	306
17.3	The t-test	308
17.4	Natural selection	312
17.5	The roles of over-production and variation in natural selection	314
17.6	How environmental factors act as forces of natural selection	316
17.7	Allelic frequencies	318
17.8	The processes affecting allelic frequencies	320
17.9	Isolation mechanisms in the evolution of new species	322
17.10	Selective breeding	324
17.11	Crop improvement by selective breeding	326
17.12	Adaptation of organisms to their environment	328
	Examination Questions	330

Chapter 19 Gene technology

19.1	Identifying and isolating genes	360
19.2	DNA cloning – the polymerase chain reaction	362
19.3	Insertion of DNA fragment into a vector	364
19.4	Uptake of the plasmid vector by the host bacterium	366
19.5	Treating disease with proteins produced by DNA recombinant techniques	368
19.6	Ethical and social implications of genetic technology	370
19.7	Bioinformatics	372
19.8	Genetic fingerprinting	374
19.9	Gene therapy	376
19.10	Genetic screening and counselling	380
19.11	Genetically modified organisms in agriculture	382
	Examination and Practice Questions	384

Chapter 18 Selection and evolution

18.1	Classification	332
18.2	Domains and kingdoms	334
18.3	Biodiversity	336
18.4	Ecosystems	338
18.5	Food chains and food webs	340
18.6	Energy transfer in ecosystems	342
18.7	The nitrogen cycle	344
18.8	Ecological techniques	346
18.9	Ecological analysis	348
18.10	Threats to biodiversity	352
18.11	Methods of protecting endangered species	354
18.12	Conservation	356
	Examination and Practice Questions	358

A section on practical skills can be found on the accompanying website. The relevant sections in the book are highlighted using conical flask icons.

Website icons indicate additional assessment material on the accompanying website.

www.oxfordsecondary.com/9780198399599