THE TRUE STORY OF MODERN COSMOLOGY

Origins, Main Actors and Breakthroughs

This book tells the story of how, over the past century, dedicated observers and pioneering scientists achieved our current understanding of the universe. It was in antiquity that humankind first attempted to explain the universe often with the help of myths and legends. This book, however, focuses on the time when cosmology finally became a true science. As the reader will learn, this was a slow process, extending over a large part of the 20th century and involving many astronomers, cosmologists and theoretical physicists. The book explains how empirical astronomical data (e.g., Leavitt, Slipher and Hubble) were reconciled with Einstein's general relativity; a challenge which finally led Friedmann, De Sitter and Lema tre, and eventually Einstein himself, to a consistent understanding of the observational results.

The reader will realize the extraordinary implications of these achievements and how deeply they changed our vision of the cosmos: From being small, static, immutable and eternal, it became vast and dynamical - originating from (almost) nothing, and yet now, nearly 14 billion years later, undergoing accelerated expansion. But, as always happens, as well as precious knowledge, new mysteries have also been created where previously absolute certainty had reigned.

1	Intr	oduction: The Awakening of Cosmic Consciousness	1		
	1.1	The First Conscious Knowledge Was of a Geometric			
		Nature	5		
	1.2	The Oldest Proofs of Art and Mathematical Reasoning	9		
	1.3	First Scientific Concepts and Models of the Cosmos	11		
2	What Is a Scientific Theory?		21		
	2.1	A Little History	22		
	2.2	Galileo, Newton, Leibniz	26		
	2.3	Illustrative Examples	28		
3	The First Cosmological Revolution of the Twentieth				
		tury	35		
	3.1	What Was the Universe Like a Hundred Years Ago?	37		
	3.2	Henrietta Leavitt	39		
	3.3	Vesto Slipher	44		
	3.4	The Great Debate of 1920: "The Scale of the Universe"	58		
	3.5	An Island Universe	68		
		3.5.1 Edwin Hubble	76		
		3.5.2 Ernst Öpik	79		
4	The	Theory of General Relativity and Its Main Solutions	81		
	4.1	Einstein's General Relativity	82		

	4.2	The Fundamental Principles of the General Theory				
		of Relativity	102			
	4.3	Einstein and the Universe in 1917	113			
	4.4	The First Solutions of Einstein's Equations	121			
		4.4.1 Schwarzschild's Black Hole Solution	121			
		4.4.2 De Sitter's Universe	128			
		4.4.3 The Friedmann Families of Solutions	131			
5						
	of th	e Universe	137			
	5.1	Karl Lundmark and Carl Wirtz	137			
	5.2	Georges Lemaître	139			
	5.3	Hubble's Law	151			
	5.4	The Interpretation of Hubble's Law	153			
	5.5	General Acceptance of Lemaître's Work of 1927	159			
	5.6	2018: The Hubble-Lemaître Law	161			
		5.6.1 Who was the first to discover that the Universe				
		is expanding?	165			
6	The Big Bang Theory					
	6.1	Dark Matter	171			
	6.2	Fred Hoyle	175			
	6.3	The Big Bang	183			
		6.3.1 George Gamow	186			
	6.4	The Cosmic Microwave Background Radiation	191			
	6.5	Alan Guth	195			
	6.6	R^2 or Starobinsky Inflation	203			
7	Tow	ards the Very Instant of Creation of the Universe	207			
	7.1	The Big Bang Cosmological Models	208			
		7.1.1 The Hot Big Bang Model	208			
10		7.1.2 The Cold Big Bang and Other Models	210			
	7.2	The Big Bang Singularity	210			
		7.2.1 The Belinsky-Khalatnikov-Lifshitz and Misner				
		Singularities	210			
		7.2.2 The Classical Singularity Theorems (Penrose,				
		Hawking)	211			
		7.2.3 A Brief Tribute to Stephen Hawking	214			
		7.2.4 On Borde-Guth-Vilenkin's Theorem	222			
	7.3	How Could the Universe Have Originated?	223			

3	The Second Cosmological Revolution of the Twentieth			
	Century			
	8.1	An Expanding Universe Satisfies Einstein's Equations	234	
	8.2	But it Turns out that the Expansion of the Universe Is		
		Accelerating	236	
	8.3	Modifications to the General Theory of Relativity	238	
		8.3.1 Acceleration: New Singularities	240	
	8.4	What Is Our Universe Like, According to Astronomical		
		Observations?	243	
		8.4.1 Some Conclusions from <i>Planck</i>	247	
)	Con	clusion	251	
Bibliography				
Index			271	