FIXED POINT THEORY AND GRAPH THEORY FOUNDATIONS AND INTEGRATIVE APPROACHES

Edited by Monther Rashed Alfuraidan and Qamrul Hasan Ansari

Fixed Point Theory and Graph Theory: Foundations and Integrative Approaches links the theories of fixed point theorems, which give the conditions under which maps (single or multivalued) have solutions, and graph theory, which uses mathematical structures to illustrate the relationship between ordered pairs of objects in terms of their vertices and directed edges.

This edited reference work is perhaps the first to provide a link between the two theories, describing not only their foundational aspects, but also the most recent advances and the fascinating intersection of the domains.

The authors provide solution methods for fixed points in different settings, with two chapters devoted to the solutions method for critically important non-linear problems in engineering, including, variational inequalities, fixed point, split feasibility, and hierarchical variational inequality problems. The last two chapters are devoted to integrating fixed point theory in spaces with the graph and the use of retractions in the fixed point theory for ordered sets.

Monther Rashed Alfuraidan is Associate Professor of Mathematics in the Department of Mathematics & Statistics at King Fahd University of Petroleum & Minerals at Dhahran, Saudi Arabia. He obtained his Ph.D. (Mathematics) from Michigan State University. He has written more than twenty articles on graph theory, algebraic graph theory and metric fixed point theory. He peer-reviewed many articles (among others) for: Algebraic Journal of Combinatorics, Arabian Journal of Mathematics, Fixed Point Theory and Applications and Journal of Inequality and Applications.

Qamrul Hasan Ansari is Professor of Mathematics at Aligarh Muslim University. Aligarh, India, and joint professor at King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia. He obtained his Ph.D. (Mathematics) from Aligarh Muslim University, India. He is an associate editor of *Journal of Optimization Theory and Applications, Fixed Point Theory and Applications, Abstract and Applied Analysis, Journal of Inequalities and Applications, Applicable Analysis, Positivity, Filomat etc. He has written more than 180 articles on variational inequalities, fixed point theory and applications, vector optimization, etc. in various international peer-reviewed journals. He has edited 6 books for Springer, Taylor & Francis and Narosa, India. He is an author of a book on <i>Metric Spaces* published by Narosa, India and has coauthored one book on *Variational Inequalities and Nonsmooth Optimization* for Taylor & Francis.

CONTENTS

00	interna	V
Fo	reword	ix
Ac	knowledgments	xi
Pre	eface	xiii
Ab	pout the Authors	XV
4	Carieti Brewder Operator Theory in Dietones Spaces	1
1.	Caristi-Browder Operator Theory in Distance Spaces Vasile Berinde, and Ioan A. Rus	1
	1.1. From the Caristi Fixed Point Theorems to Caristi, Caristi-Kirk and Caristi-Browder	
	Operators	1
	1.2. List of Notations	4
	1.3. Weakly Picard Operators on L-Spaces	4
	1.4. Caristi-Browder Operators on Metric Spaces	6
	1.5. Caristi-Browder Operators on \mathbb{R}^m_+ -Metric Spaces	12
	1.6. Caristi-Browder Operators on $s(\mathbb{R}_+)$ -Metric Spaces	16
	1.7. Caristi-Browder Operators on Kasahara Spaces	19
	1.8. Research Directions in the Caristi-Browder Operator Theory	21
	References	22
•	Manatina Annualization of Fired Baints of Circula valued Almana	
2.	Iterative Approximation of Fixed Points of Single-valued Almost	20
	Contractions Vasile Berinde and Měděline Běsurer	29
	Vasile Berinde, and Mădălina Păcurar	
	2.1. Introduction	29
	2.2. Fixed Point Theorems for Single-valued Self Almost Contractions	32
	2.3. Implicit Almost Contractions	50
	2.4. Common Fixed Point Theorems for Almost Contractions	58
	2.5. Almost Contractive type Mappings on Product Spaces	65
	2.6. Fixed Point Theorems for Single-valued Nonself Almost Contractions	81
	References	87
3.	Approximate Fixed Points	99
	Mostafa Bachar, Buthinah A. Bin Dehaish and Mohamed Amine Khamsi	
	3.1. Introduction	99
	3.2. Approximate Fixed Points of Mappings in Banach Spaces	101
	3.3. Approximate Fixed Points of Mappings in Hyperbolic Spaces	107
	3.4. Approximate Fixed Points of Monotone Mappings	117

	3.5. Approximate Fixed Points of Nonlinear Semigroups	124
	3.6. Approximate Fixed Points of Monotone Nonlinear Semigroups	129
	References	136
4.	Viscosity Methods for Some Applied Nonlinear Analysis Problems Paul-Emile Maingé and Abdellatif Moudafi	139
	4.1. Introduction	140
	4.2. Viscosity Method for Fixed Point Problems	142
	4.3. Viscosity Method for Split Common Fixed Point Problems	154
	4.3.1. Algorithms and Related Convergence Results	154
	4.3.2. Convergence Results in Some Specific Cases	163
	4.3.3. Numerical Experiments for an Inverse Heat Equation	165
	4.4. Viscosity Method for Split Equilibrium Problems	170
	References	182
5.	Extragradient Methods for Some Nonlinear Problems Qamrul Hasan Ansari and D. R. Sahu	187
	5.1. Introduction	188
	5.2. Preliminaries	189
	5.3. Projection Gradient Method	194
	5.4. Extragradient Method for Nonexpansive Mappings and Variational Inequalities5.5. Modified Extragradient Method for Nonexpansive Mappings and Variational	196
	Inequalities	201
	5.6. Extragradient Method for Hierarchical Variational	
	Inequalities	206
	5.6.1. Implicit Extragradient Method for Hierarchical Variational Inequalities	207
	5.6.2. Explicit Extragradient Method for Hierarchical Variational Inequalities	213
	5.7. Extragradient Methods for Split Feasibility Problems	218
	5.7.1. An Extragradient Method for Nonexpansive Mappings and Split	
	Feasibility Problems	220
	5.7.2. Strong Convergence of a Relaxed Extragradient Method for Split	
	Feasibility Problems	225
	References	228
6.	Iterative Methods for Nonexpansive Type Mappings Abdul Rahim Khan and Hafiz Fukhar-ud-din	231
	6.1. Introduction and Preliminaries	231
	6.2. Nonexpansive Mappings in Uniformly Convex Banach Spaces	235
	6.3. Nonexpansive Mappings in CAT(0) Spaces	244
	6.4. An Algorithm of Asymptotically Nonexpansive Mappings	253

~	-	-	te	-	4-
	n	n	TΩ	n	TC

		Existence and Approximation of Fixed Points	265
		Viscosity Method for Generalized Asymptotically Nonexpansive Mappings	272
	Refer	ences ences	283
7.	Motr	ic Fixed Point Theory in Spaces with a Graph	287
′.		ther Rashed Alfuraidan	201
		Introduction	288
	7.2.	Banach Contraction Principle	290
		7.2.1. Ran and Reurings Fixed Point Theorem	291
		7.2.2. Nieto and Rodríguez-López Fixed Point Theorem	292
	7.3.	Basic Definitions and Properties	294
		7.3.1. Graph Theory	294
		7.3.2. Hyperbolic Metric Spaces	296
		7.3.3. Modular Function Spaces	297
		7.3.4. Modular Metric Spaces	301
		Banach Contraction Principle in Metric Spaces with a Graph	305
	7.5.	Caristi's Fixed Point Theorem	305
		7.5.1. Caristi's Theorem in Partially Ordered Metric Spaces	306
		7.5.2. Caristi's Theorem in Metric Spaces with a Graph	310
		7.5.3. Minimal Points and Fixed Point Property in a Graph	311
		7.5.4. Kirk's Problem via Graphs	314
		7.5.5. Applications of Metric Spaces with a Graph	316
		The Contraction Principle in Modular Metric Spaces with a Graph	319
		Monotone Pointwise Contractions in Banach Spaces with a Graph	323
	7.8.	Monotone Ćirić Quasi-Contraction Mappings	331
		7.8.1. Monotone Quasi-Contraction Mappings in Metric Spaces with a Graph	331
		7.8.2. Monotone Quasi-Contraction Mappings in Modular Metric Spaces with a	
		Graph	334
	7.9.	Monotone Nonexpansive Mappings in Banach Spaces with a Graph	337
	7.10.	Monotone Nonexpansive Mappings in Hyperbolic Metric Spaces with a Graph	340
	7.11.	The Contraction Principle for Monotone Multivalued Mappings	343
		7.11.1. Monotone Multivalued Mappings in Metric Spaces with a Graph	343
		7.11.2. The Contraction Principle for Multivalued Mappings in Modular Function	
		Spaces with a Graph	347
		7.11.3. The Contraction Principle for Multivalued Mappings in Modular Metric	
		Spaces with a Graph	352
	7.12.	Monotone Nonexpansive Multivalued Mappings	355
		7.12.1. Monotone Nonexpansive Multivalued Mappings in Hyperbolic Metric	
		Spaces with a Graph	355
		7.12.2. Monotone Nonexpansive Multivalued Mappings in Modular Function	
		Spaces with a Graph	357
	Refer	rences	361

8. The Use of Retractions in the Fixed Point Theory for Ordered Set Bernd S. W. Schröder	ts 365
8.1. Introduction	366
8.2. Chain-Complete Ordered Sets	368
8.3. The Abian-Brown Theorem	370
8.4. Comparative Retractions	373
8.5. Irreducible Points	376
8.6. Constraint Propagation	379
8.7. Retractable Points	383
8.8. Verifying Connected Collapsibility Directly	387
8.9. Graphs	392
8.10. Simplicial Complexes	399
8.11. Topological Realizations	405
8.12. Iterated Clique Graphs	406
8.13. K-Null Comparability Graphs	414
References	416
Index	419