ALGEBRAIC AND DISCRETE MATHEMATICAL METHODS FOR MODERN BIOLOGY

RAINA ROBEVA, EDITOR

Inspired by the national initiative toward a new biology, this work offers a collection of modules introducing methods from modern discrete mathematics into the undergraduate math and biology curricula. Each module begins with a question from contemporary biology, followed by the description of mathematical methods and theory appropriate for the search of answers. Projects and exercises embedded in the text utilize freely accessible or widely available software for visualization, simulation, and analysis used in modern biology research. This book is appropriate for mathematics courses such as finite mathematics, discrete structures, linear algebra, abstract/modern algebra, graph theory, probability, bioinformatics, statistics, biostatistics, and modeling, as well as for biology courses such as genetics, cell and molecular biology, biochemistry, ecology, and evolution. The companion website includes solutions to all exercises and additional materials including tutorials, projects, data sets, and computer code.

Key Features

- · Examines significant questions in modern biology and their mathematical treatments
- Presents important concepts and methods from discrete mathematics in the context of essential biology
- · Features material appropriate for both mathematics and biology courses
- Presents chapters in modular format, so coverage does not need to follow the Table of Contents
- · Introduces projects appropriate for undergraduate research
- · Requires no calculus as a prerequisite

Raina Robeva was born in Sofia, Bulgaria. She has a PhD in Mathematics from the University of Virginia and has led multiple NSF-funded curriculum development projects at the interface of mathematics and biology. She is the lead author of the textbook An Invitation to Biomathematics (2008) and the lead editor of the volume Mathematical Concepts and Methods in Modern Biology: Using Modern Discrete Models (2013), both published by Academic Press. Robeva is the founding Chief Editor of the research journal Frontiers in Systems Biology. She is a professor of Mathematical Sciences at Sweet Briar College and lives in Charlottesville, Virginia.

Contents

	ontributors	ix		2.6 Conclusions	48
Pre	eface	xi		References	49
1.	Graph Theory for Systems Biology: Interval Graphs, Motifs, and Pattern		3.	Adaptation and Fitness Graphs Kristina Crona and Emilie Wiesner	
	Recognition John R. Jungck and Rama Viswanathan 1.1 Introduction 1.2 Revisualizing, Recognizing, and Reasoning About Relationships 1.2.1 Basic Concepts from Graph Theory 1.2.2 Interval Graphs in Biology 1.3 Example I—Differentiation: Gene Expression 1.4 Example II—Disease Etiology 1.5 Conclusion Acknowledgments References	1 3 3 6 15 20 25 26 26	4.	 3.1 Introduction 3.2 Fitness Landscapes and Fitness Graphs 3.2.1 Basic Terminology and Notation 3.2.2 Fitness, Fitness Landscapes, and Fitness Graphs 3.2.3 Epistasis 3.3 Fitness Graphs and Recombination 3.4 Fitness Graphs and Drug Cycling References Signaling Networks: Asynchronous Boolean Models Réka Albert and Raina Robeva 	51 52 52 53 55 58 60 63
2.	Food Webs and Graphs			4.1 Introduction to Signaling Networks	65
	 Margaret (Midge) Cozzens 2.1 Introduction 2.2 Modeling Predator-Prey Relationships with Food Webs 2.3 Trophic Levels and Trophic Status 2.3.1 Background and Definitions 2.3.2 Adding Complexity: Weighted Food Webs and Flow-Based Trophic Levels 2.3.3 Flow-Based Trophic Level 2.4 Competition Graphs and Habitat Dimension 2.4.1 Competition Graphs (also Called Niche Overlap Graphs and Predator Graphs) 2.4.2 Interval Graphs and Boxicity 2.4.3 Habitat Dimension 	29 29 30 31 35 36 37 37 40		 4.2 A Brief Summary of Graph-Theoretic Analysis of Signaling Networks 4.3 Dynamic Modeling of Signaling Networks 4.4 The Representation of Node Regulation in Boolean Models 4.5 The Dynamics of Boolean Models 4.6 Attractor Analysis for Stochastic Asynchronous Update 4.7 Boolean Models Capture Characteristic Dynamic Behavior 4.8 How to Deal with Incomplete Information when Constructing the Model 4.8.1 Dealing with Gaps in Network Construction 4.8.2 Dealing with Gaps in Transition Functions 4.8.3 Dealing with Gaps in Initial 	66 69 70 72 75 77 80 81 82
	2.5 Connectance, Competition Number, and Projection Graphs	41		Condition 4.8.4 Dealing with Gaps in Timing	84
	2.5.1 Connectance2.5.2 Competition Number	42		Information 4.9 Generate Novel Predictions with the	85
	2.5.3 Projection Graphs	44		Model	85

	4.10 Boolean Rule-Based Structural Analysis of			6.8 Conclusion	137
	Cellular Networks	86		References	138
	4.11 Conclusions	90			
	References	90	7.	BioModel Engineering with Petri Nets	
5.	Dynamics of Complex Boolean				
	Networks: Canalization, Stability,			Mary Ann Blätke, Monika Heiner and Wolfgang	
	and Criticality			Marwan	
				7.1 Introduction	141
	Qijun He, Matthew Macauley and Robin Davies			7.2 Running Case Study	144
	5.1 Introduction	93		7.3 Petri Nets (PN)	146
	5.2 Boolean Network Models	95		7.3.1 Modeling	146
	5.2.1 Gene Regulatory Networks	95		7.3.2 Analysis	153
	5.2.2 Network Topology	96		7.3.3 Further Reading	159
	5.2.3 Network Topology and Random	30		7.3.4 Exercises	160
	Networks	99		7.4 Stochastic Petri Nets (SPN)	162
	5.2.4 Boolean Functions	100		7.4.1 Modeling	162
	5.2.5 Boolean Networks	100		7.4.2 Analysis	165
					169
	5.3 Canalization	104		7.4.3 Further Reading 7.4.4 Exercises	
	5.3.1 Canalizing Boolean Functions	104			170
	5.3.2 Nested Canalizing Functions	105		7.5 Continuous Petri Nets (CPN)	172
	5.3.3 Canalizing Depth	109		7.5.1 Modeling	172
	5.3.4 Dominant Variables of NCFs	110		7.5.2 Analysis	173
	5.4 Dynamics Over Complex Networks	112		7.5.3 Further Reading	175
	5.4.1 Boolean Calculus	113		7.5.4 Exercises	176
	5.4.2 Derrida Plots and the Three			7.6 Hybrid Petri Nets (\mathcal{HPN})	177
	Dynamical Regimes	115		7.6.1 Modeling	178
	5.4.3 Ensembles of RBNs	116		7.6.2 Analysis	180
	Acknowledgments	118		7.6.3 Further Reading	181
	References	118		7.6.4 Exercises	182
				7.7 Colored Petri Nets	183
6.	Steady State Analysis of Boolean			7.7.1 Further Reading	186
	Models: A Dimension Reduction			7.7.2 Exercises	186
	Approach			7.8 Conclusions	187
				Acknowledgments	189
	Alan Veliz-Cuba and David Murrugarra			7.9 Supplementary Materials	189
	6.1 Introduction	121		References	189
	6.2 An Example: Toy Model of the <i>lac</i> Operon	122			
	6.3 General Reduction	125	8.	Transmission of Infectious Diseases:	
	6.3.1 Definition	125		Data, Models, and Simulations	
				Bata, Wodels, and Simulations	
	6.3.2 Examples	125		Winfried Just, Hannah Callender, M. Drew	
	6.4 Implementing the Reduction Algorithm	120		LaMar and Natalia Toporikova	
	Using Boolean Algebra	128		8.1 Introduction: Why Do We Went to Medel	
	6.5 Implementing the Reduction Algorithm	100		8.1 Introduction: Why Do We Want to Model Infectious Diseases?	102
	Using Polynomial Algebra	129		8.2 Mathematical Models of Disease	193
	6.5.1 Background	129			100
	6.5.2 Using Polynomial Algebra Software			Transmission	198
	to Reduce Boolean Networks	130		8.2.1 Transmission Probabilities	199
	6.6 Applications	131		8.2.2 The Time Line of Within-Host	0.01
	6.6.1 The <i>lac</i> Operon	131		Dynamics	201
	6.6.2 Th-Cell Differentiation	133		8.2.3 Movement Between Compartments	203
	6.7 AND Boolean Models	134		8.2.4 Basic Model Types: SEIR, SIR, SI, and	
	6.7.1 Background	135		SIS	206

	9.2.F. How to Madel Time and Dun			10.2.1 Nanindanandanas of Multiple	
	8.2.5 How to Model Time and Run	200		10.3.1 Nonindependence of Multiple	250
	Simulations	208		Traits	250
	8.3 How Does the Computer Run	210		10.3.2 The Genetic Variance-Covariance	0.50
	Simulations?	210		Matrix	252
	8.3.1 Meet the Simulator	210		10.3.3 Simultaneous Selection on	
	8.3.2 How to Load the Die	212		Multiple Traits	253
	References	214		10.3.4 Predicting the Outcome of	
				Selection on Covarying Traits	255
9.	Disease Transmission Dynamics on			10.3.5 Evolution of the G Matrix Itself	257
	Networks: Network Structure			References	258
	Versus Disease Dynamics				
			11	Matabalic Analysis: Algebrais	
	Winfried Just, Hannah Callender and M. Drew Lamar		11.	Metabolic Analysis: Algebraic	
	M. Drew Lamar			and Geometric Methods	
	9.1 Introduction	217		Terrell L. Hodge, Blair R. Szymczyna and	
	9.2 Models Based on the Uniform Mixing			Todd J. Barkman	
	Assumption	218			261
	9.2.1 Compartment-Based Models	218		11.1 Introduction	261
	9.2.2 The Basic Reproductive Ratio R ₀	220		11.2 Encoding the Reactions: Linear	0.50
	9.3 Network-Based Models	224	. /	Algebraic Modeling	262
	9.3.1 Networks and Graphs	225		11.3 Adding Reaction Kinetics: Algebraic	
	9.3.2 Disease Transmission on			Formulation of Mass-Action	
	Networks	229		Kinetics	271
	9.3.3 Examples of Contact Networks	230		11.4 Directions for Further Reading and	
	9.3.4 Additional Graph-Theoretic	1	1	Research: Metabolic Pathways	273
	Notions	231		11.5 NMR and Linear Algebraic Methods	274
	9.3.5 Erdős-Rényi Random Graphs	233		11.6 NMR Spectroscopy and Applications to	
	9.4 Suggestions for Further Study	234		the Study of Metabolism	274
	Acknowledgments	235		11.6.1 Principles of NMR Spectroscopy	275
	References	235		11.6.2 The NMR Spectrum	277
		-		11.6.3 NMR Investigations of	
0				Metabolism	281
U.	Predicting Correlated Responses in			11.7 NMR for Metabolic Analysis and	
	Quantitative Traits Under Selection:			Mathematical Methods: Directions of	
	A Linear Algebra Approach			Further Research	289
	Janet Steven and Bessie Kirkwood			11.8 Supplementary Materials	290
	Janet Steven and Bessie Kirkwood			References	290
	10.1 Introduction	237			
	10.2 Quantifying Selection on Quantitative				
	Traits	238	12.	Reconstructing the Phylogeny:	
	10.2.1 Describing Traits Mathematically	238		Computational Methods	
	10.2.2 Quantifying Reproduction			Condition to the second Residue Verbide	
	and Survival	241		Grady Weyenberg and Ruriko Yoshida	
	10.2.3 Describing the Relationship			12.1 Introduction	293
	Between Fitness and a Trait	242		12.1.1 Sequences and Alignments	297
	10.2.4 Determining the Genetic			12.2 Quantifying Evolutionary Change	299
	Component of Quantitative			12.2.1 Probabilistic Models of Molecular	
	Traits	245		Evolution	299
	10.2.5 Estimating Heritability in			12.2.2 Common Model Extensions	306
	a Trait	246		12.3 Reconstructing the Tree	306
	10.2.6 The Breeder's Equation	247		12.3.1 Distance-Based Methods	306
	10.2.7 The Price Equation	249		12.3.2 Maximum Parsimony	309
	10.3 Covariance Among Traits Under			12.3.3 Methods Based on Probability	
	Selection	249		Models	310

	12.4 Model Selection	312	13.4.2 The Knudsen-Hein Grammar for	
	12.5 Statistical Methods to Test Congruency		RNA Secondary Structures	337
	Between Trees	313	13.4.3 Secondary Structure Prediction	
	References	316	Using SCFGs	340
			13.4.4 Summary	341
			13.5 Pseudoknots	341
13.	RNA Secondary Structures:		Acknowledgments	344
	Combinatorial Models and Folding Algorithms		References	344
	Qijun He, Matthew Macauley and Robin Davies		14. RNA Secondary Structures: An Approach Through Pseudoknots	
	13.1 Introduction	321	and Fatgraphs	
	13.2 Combinatorial Models of Noncrossing			
	RNA Structures	324	Christian M. Reidys	
	13.2.1 Partial Matchings and Physical		14.1 Introduction	347
	Constraints	324	14.2 Fatgraphs and Shapes	349
	13.2.2 Loop Decomposition	327	14.3 Genus Recursion	354
	13.3 Energy-Based Folding Algorithms for		14.4 Shapes of Fixed Topological	
	Secondary Structure Prediction	329	Genus	357
	13.3.1 Maximizing Bond Strengths via		Acknowledgments	361
	Dynamic Programming	329	References	361
	13.3.2 Minimum Free Energy Folding	333		
	13.4 Stochastic Folding Algorithms via			
	Language Theory	335		
	13.4.1 Languages and Grammars	335	Index	363