

Contents

1	When is a material stable?	1
1.1	Concept	1
1.2	Introduction	1
1.3	Definitions	2
1.4	The first law of thermodynamics	4
1.5	The second law of thermodynamics	5
1.6	Closed systems and heat reservoirs	12
1.7	The Helmholtz free energy	13
1.8	The Gibbs free energy	14
1.9	Chemical potentials	15
1.10	The Gibbs-Duhem equation	16
1.11	The Gibbs phase rule	17
1.12	Closing remarks	18
	Further reading	18
2	Phase diagrams	19
2.1	Introduction	19
2.2	Free energy - composition curves	21
2.3	From free energy - composition curves to the equilibrium state	22
2.4	Phase diagram for complete miscibility	25
2.5	Phase diagrams for limited solubility in the solid state	26
2.6	Closing remarks	28
	Further reading	29
3	Restless motion	30
3.1	Concept	30
3.2	Evidence of restless atomic motion	30
3.3	Fluctuations and thermally activated processes	31
3.4	Brownian motion	33
3.5	The fluctuation-dissipation theorem	34
3.6	Some other manifestations of restless atomic motion in materials	37
	Further reading	39
4	Defects	40
4.1	Concept	40
4.2	Change in materials	40
4.3	Point defects	41
4.4	Dislocations	46
4.5	Grain boundaries	50
	Further reading	51

5 Symmetry	52
5.1 Concept	52
5.2 Introduction	52
5.3 Conservation laws	54
5.4 Physical properties of crystals	55
5.5 Topological defects	57
5.6 Quasicrystals	58
Further reading	64
6 Quantum behaviour	65
6.1 Concept	65
6.2 The size and identity of atoms	65
6.3 The double slit experiment	66
6.4 Identical particles, the Pauli exclusion principle and spin	71
6.5 Consequences of the Pauli exclusion principle	72
6.6 Tunnelling	76
6.7 Thermal properties of solids	76
6.8 Quantum diffusion	79
6.9 Closing remarks	80
Further reading	80
7 Small is different	81
7.1 Concept	81
7.2 Introduction	81
7.3 Quantum dots	83
7.4 Catalysis	86
7.5 Giant magnetoresistance	86
7.6 Closing remarks	93
Further reading	93
8 Collective behaviour	94
8.1 Concept	94
8.2 More is different	94
8.3 Three examples of processes involving multiple length scales	96
Further reading	101
9 Materials by design	102
9.1 Concept	102
9.2 Introduction	102
9.3 Microstructure	103
9.4 An example: replacing the 'nickel'	105
9.5 Self-assembly	105
9.6 Smart materials	111
9.7 Closing remarks	113
Further reading	113
10 Metamaterials	114
10.1 Concept	114

10.2	Introduction	114
10.3	An example: a metamaterial for elastic waves	115
10.4	Electromagnetic metamaterials and negative refraction	118
10.5	Invisibility cloaks	122
10.6	Closing remarks	123
	Further reading	124
11	Biological matter as a material	125
11.1	Concept	125
11.2	What is life?	125
11.3	Active matter	127
11.4	Synthetic biology	131
11.5	Closing remarks	131
	Further reading	132
Index		133