PALEOSTRESS INVERSION TECHNIQUES

Methods and Applications for Tectonics

Christophe Pascal

A practical guide on paleostress inversion techniques

After reviewing fundamental geological aspects concerning natural fractures and introducing basic mechanical theories, *Paleostress Inversion Techniques: Methods and Applications for Tectonics* introduces the methodologies developed to reconstruct (paleo)stress tensors from geological data. The interest and potential outcomes of the methods are illustrated using practical examples. Recommendations and guidelines conclude the book.

This book is an ideal reference for both academics and industry researchers in earth sciences. Paleostress inversion methods are particularly useful in tectonic analyses at regional and local scales, and their outcomes are relevant when trying to predict the orientations of fracture sets and potential fluid flow paths and associated mineralisations. As such, they represent a valuable tool for exploration geologists and geophysicists in mining, oil and geothermal industries.

Key Features

- Includes detailed explanations of the methods, along with concrete applications of paleostress inversion techniques
- Clearly illustrates the outcomes, advantages and limitations of the techniques
- Serves as a practical guide for both academics and industry researchers interested in structural geology, geodynamics and tectonics

About the Author

Christophe Pascal is Professor of Structural Geology at the Ruhr University Bochum, Germany. He received an initial education in theoretical physics before studying geosciences. In 1998, he defended a PhD thesis in quantitative tectonics supervised by Prof. Jacques Angelier, one of the most renowned specialists in paleostress inversion techniques. He has successively worked at the Free University, Amsterdam, as a postdoctoral fellow, and at the Geological Survey of Norway as a senior researcher. Throughout his scientific career, he has focused on the use and development of quantitative approaches to investigate tectonic problems.

elsevier.com/books-and-journals

Acknowledgements ix

1.	Introduction	1
2.	Brittle structures in the field	3
	2.1 Introduction	3
	2.2 Classification of brittle structures	3
	2.3 Faults and criteria of displacement	11
	2.4 Chronology criteria	19
	2.5 Field measurements and writing conventions	21
3.	Theoretical aspects	25
	3.1 From force to stress and stress tensor	25
	3.2 Fracture mechanics	44
4.	Fault slip inversion methods	61
	4.1 Background of fault slip inversion methods	61
	4.2 Numerical inversion of fault slip data	75
	4.3 Right dihedra method	117
	4.4 Validity and limits of fault slip inversion methods	122
5.	Inversion of tensile fractures	129
	5.1 Pore fluid pressure and opening of pre-existing	
	discontinuities	129
	5.2 Numerical inversion	136
	5.3 Further remarks	150

6.	Inversion of calcite twins	155
	6.1 Calcite twins: Definitions and general aspects	155
	6.2 Calcite twins as paleopiezometers: Early studies	157
	6.3 Inversion methods	159
	6.4 Validation of the calcite stress inversion technique	165
7.	Determining paleostresses with 'incomplete' data	171
	7.1 Forward modelling	171
	7.2 Paleostress reconstructions from fault slip sense data	182
	7.3 Geomechanical approaches	188
8.	One step beyond: Full determination of paleostress tensors	199
	8.1 Paleostress magnitudes from geological objects	199
	8.2 Adjustment of reduced Mohr circles using failure and	
	reactivation laws	199
	8.3 Pore fluid paleopressure determinations from analyses	
	of fluid inclusions	207
	8.4 Stylolithe paleopiezometry	210
9.	Some examples of applications of stress inversion	
	methods in tectonic analyses	221
	9.1 Fault slip data, paleostresses and evolution of the	
	Alpine–Mediterranean system	221
	9.2 Stress determinations from inversion of focal mechanisms	225
	9.3 Stress magnitudes in forelands of orogens from	
	inversion of calcite twins	227
10.	A practical guide to paleostress analysis	231
	10.1 Data acquisition	231
	10.2 Processing of the data	235
	10.3 Reporting	238
D-6	747	

References 247 Index 261