Contents

efac	e		٧
1	Int	roduction to supramolecular chemistry	1
	1.1	Introduction	1
	1.2	Supramolecular chemistry and molecular recognition in nature	2
	1.3	Design principles	4
	1.4	Solvent effects	10
	1.5	How are supramolecular interactions and complexes studied?	12
	1.6	The modern importance of supramolecular chemistry	19
	1.7	Further reading	20
	1.8	Summary	20
	1.9	Exercises	21
2	Bin	ding of charged guests	23
	2.1	Introduction	23
	2.2	Why bind cations and anions?	23
	2.3	Design principles for cation and anion receptors	24
	2.4	Cation binding receptors	28
	2.5	Anion binding receptors	35
	2.6	Simultaneous cation and anion binding (ion pair recognition)	46
	2.7	Applications of cation and anion binding	50
	2.8	Summary	58
	2.9	Further reading	59
	2.10	Exercises	60
3	Bind	ding of neutral guests	63
	3.1	Introduction	63
	3.2	Host-guest recognition: rational design of hosts for neutral guest binding	63
	3.3	Guest binding within hydrophobic cavities	69
	3.4	Recognition of neutral guest molecules in solids	77
	3.5	Summary	79
	3.6	Further reading	80
	3.7	Exercises	80

4	Self	f-assembly			83
	4.1	Introduction			83
	4.2	Metal cation self-assembly			85
	4.3	Neutral self-assembly			100
	4.4	Anion self-assembly			113
	4.5	Further applications of self-assembly			117
	4.6	Summary and conclusions			121
	4.7	Further reading			121
	4.8	Exercises			122
5	Me	chanically interlocked molecules			124
	5.1	Introduction			124
	5.2	Synthesis of mechanically interlocked molecules			125
	5.3	Properties and applications of mechanically interlocked	ed molecu	les	146
	5.4	Molecular machines			158
	5.5	Summary and conclusions			175
	5.6	Further reading			177
	5.7	Evercises			177
Glossar	V				179
Index	y				181
HIGCX					