Contents

	Pref	ace		xiii
	A Note to the Instructor		xvii	
	AN	ote to the Student		xxi
	Abo	ut the Author		XXV
1	AC	lassical Beginning		1
	1.1	The number $\sqrt{2}$ is irrational		2
	1.2	Lowest terms		4
	1.3	A geometric proof		5
	1.4	Generalizations to other roots		6
		Mathematical Habits		7
		Exercises		8
2	Mul	tiple Proofs		9
	2.1	$n^2 - n$ is even		10
	2.2	One theorem, seven proofs		10
	2.3	Different proofs suggest different gen	eralizations	12
		Mathematical Habits		13
		Exercises		14
		Credits		14
3	Nun	nber Theory		15
	3.1	Prime numbers		15
	3.2	The fundamental theorem of arithmet	ic	16
	3.3	Euclidean division algorithm		19
	3.4	Fundamental theorem of arithmetic, u	niqueness	21
	3.5	Infinitely many primes	THE REAL PROPERTY.	21
		Mathematical Habits		24
		Exercises		25

viii Contents

4	Matl	hematical Induction	27
	4.1	The least-number principle	27
	4.2	Common induction	28
	4.3	Several proofs using induction	29
	4.4	Proving the induction principle	32
	4.5	Strong induction	33
	4.6	Buckets of Fish via nested induction	34
	4.7	Every number is interesting	37
		Mathematical Habits	37
		Exercises	38
		Credits	39
5	Disci	rete Mathematics	41
	5.1	More pointed at than pointing	41
	5.2	Chocolate bar problem	43
	5.3	Tiling problems	44
	5.4	Escape!	47
	5.5	Representing integers as a sum	49
	5.6	Permutations and combinations	50
	5.7	The pigeon-hole principle	52
	5.8	The zigzag theorem	53
		Mathematical Habits	55
		Exercises	55
		Credits	56
6	Proo	ofs without Words	57
	6.1	A geometric sum	57
	6.2	Binomial square	58
	6.3	Criticism of the "without words" aspect	58
	6.4	Triangular choices	59
	6.5	Further identities	60
	6.6	Sum of odd numbers	60
	6.7	A Fibonacci identity	61
	6.8	A sum of cubes	61
	6.9		62
	6.10	Area of a circle	62

Contents ix

	6.11	Tiling with dominoes		
	6.12	How to lie with pictures		
		Mathematical Habits		
		Exercises		
		Credits		
7	Theo	ory of Games		
	7.1	Twenty-One		
	7.2	Buckets of Fish		
	7.3	The game of Nim		
	7.4	The Gold Coin game		
	7.5	Chomp		
	7.6	Games of perfect information		
	7.7	The fundamental theorem of finite gam	nes	
		Mathematical Habits		
		Exercises		
		Credits		
8	Pick	's Theorem		
129	8.1	Figures in the integer lattice		
	8.2	Pick's theorem for rectangles		
	8.3	Pick's theorem for triangles		
	8.4	Amalgamation		
	8.5	Triangulations		
	8.6	Proof of Pick's theorem, general case		
		Mathematical Habits		
		Exercises		
		Credits		
9	Lattice-Point Polygons			
	9.1	Regular polygons in the integer lattice		
	9.2	Hexagonal and triangular lattices		
	9.3	Generalizing to arbitrary lattices		
		Mathematical Habits		
		Exercises		
		Credits		

X	Content
X	Conten

10	Poly	gonal Dissection Congruence Theor	rem		111
	10.1	The polygonal dissection congruence	e theorem		111
	10.2	Triangles to parallelograms			112
	10.3	Parallelograms to rectangles			113
	10.4	Rectangles to squares			113
	10.5	Combining squares			114
	10.6	Full proof of the dissection congrue	nce theorem		115
	10.7	Scissors congruence			115
		Mathematical Habits			117
		Exercises			118
		Credits			119
11	Fund	ctions and Relations			121
	11.1	Relations			121
	11.2	Equivalence relations			122
	11.3	Equivalence classes and partitions			125
	11.4	Closures of a relation			127
	11.5	Functions			128
		Mathematical Habits			129
		Exercises			130
12	Grap	oh Theory			133
	12.1	The bridges of Königsberg			133
	12.2	Circuits and paths in a graph			134
	12.3	The five-room puzzle			137
	12.4	The Euler characteristic			138
		Mathematical Habits		***	139
		Exercises			140
		Credits			142
13	Infin	ity			143
	13.1	XXIII .1 C 1XX . 1			143
		TT'11 .1 1			144
		Hilbert's train			144
		Hilbert's half marathon			145
		Cantor's cruise ship			146
	13.2	Countability			146

			150
	13.3	Uncountability of the real numbers	150
		Alternative proof of Cantor's theorem	152
		Cranks	153
	13.4		154
		Equinumerosity	156
	13.6	The Shröder-Cantor-Bernstein theorem	157
	13.7	The real plane and real line are equinumerous	159
		Mathematical Habits	160
		Exercises	160
		Credits	161
14	Orde	er Theory	163
	14.1	Partial orders	163
	14.2	Minimal versus least elements	164
	14.3	Linear orders	166
	14.4	Isomorphisms of orders	167
	14.5	The rational line is universal	168
	14.6	The eventual domination order	170
		Mathematical Habits	171
		Exercises	171
15	Real	Analysis	173
		Definition of continuity	173
		Sums and products of continuous functions	175
		Continuous at exactly one point	177
	15.4		178
	15.5	The intermediate-value theorem	178
	15.6	The Heine-Borel theorem	179
	15.7	The Bolzano-Weierstrass theorem	181
	15.8	The principle of continuous induction	182
		Mathematical Habits	185
		Exercises	185
		Credits	187
			100
		vers to Selected Exercises	189
		ography	199
		x of Mathematical Habits	201
		tion Index	203
	Subi	ect Index	205