

Contents

Preface to the First Edition (1998)	ix	3.6 Relative Humidity	48
Preface to the Second Edition (2014)	xii	3.7 Dew Point: The Temperature of Condensation	51
Foreword to the First Edition (1998)	xiii	3.8 Frost Point: The Temperature of Freezing	52
Reviews to the First Edition (1998)	xv	3.9 Wet Bulb Temperature: The Temperature of Evaporation	53
Foreword to the Second Edition (2013)	xix	3.10 The Psychrometric Chart	55
Preface to the Third Edition	xxi	3.11 Humidity When It Rains or Snows	57
Acknowledgements	xxiii	References	59
Credits	xxv	Further Reading	59
Author Biography	xxix		
I			
THEORETICAL GROUNDS, KEY VARIABLES, MAIN DETERIORATION MECHANISMS			
1. Microclimate and Atmospheric Variables			
1.1 Microclimate	3	4.1 The Maxwell–Boltzmann Equation and the Distribution of Molecules by Velocities	61
1.2 Air, Water Vapour, Perfect and Real Gases	7	4.2 Thermal Emission of Bodies	62
1.3 The Internal Boundary Layer and the Viscous Layer	9	4.3 The Arrhenius Equation	63
1.4 Coanda Effect	11	4.4 Saturation Pressure of Water Vapour in Air	64
1.5 Atmospheric Variables and Parameters	12	4.5 Relative Humidity and Mutual Distance Between H ₂ O Molecules	65
References	13	4.6 The Liquid State and the Free H ₂ O Molecules in It	65
2. Temperature: A Key Variable in Conservation and Thermal Comfort		4.7 The Raoult Law for Ideal Solutions	67
2.1 Temperature: One Variable, Four Popular Definitions	15	4.8 Ebullition and Freezing	67
2.2 Mechanisms of Temperature-Induced Deterioration	16	4.9 An Additional Aspect of Relative Humidity	68
2.3 The Urban Heat Island	21	4.10 The Three Classes of Water Vapour	68
2.4 Temperature in a Building, a Room	22	4.11 Conclusions	70
2.5 Temperature in a Showcase	28	References	70
2.6 People's Thermal Comfort and Discomfort	30		
2.7 Is It Possible to Combine People's Comfort, Conservation Needs, and Sustainability?	31		
2.8 Planning Air Temperature Monitoring to Study Air–Surface Interactions and for Environmental Diagnostics	36		
References	40		
Further Reading	42		
3. Theoretical Grounds for Humidity			
3.1 Partial Pressure of Water Vapour	43	6.1 Air–Surface Interactions and Environmental Diagnostics	93
3.2 Derivation of the Latent Heat	44	6.2 The Equilibrium Moisture Content and Dimensional Changes in Wood	97
3.3 Mixing Ratio of Water Vapour and Dry Air	46	6.3 Mechanisms of Humidity Degradation in Paper and Parchment	101
3.4 Specific Humidity	47	6.4 Biological Habitat and Vacuum Cleaners	106
3.5 Absolute Humidity	48	6.5 Molecular Layers of Water on the Surface of Metals and Glass	109
		6.6 Chemical Forms of Decay	111
		6.7 A Complex Structure: The Organ Pipe	112

6.8 What Is the Best Microclimate for Conservation?	114	10.4 Urban Climate: Heat Island and Aerodynamic Disturbance	181
6.9 Keeping Constant Relative Humidity in Rooms and Showcases	115	10.5 Dispersion and Transportation of Pollutants in a City	182
6.10 Condensation on Cold Surfaces	119	10.6 Wind Friction Near a Surface	183
6.11 People as a Moisture Source	120	10.7 Vertical Fluxes of Heat, Moisture and Momentum	183
References	121	10.8 Heat Balance at the Soil or the Monument Surface	185
7. Atmospheric Water, Capillary Rise, and Stone Weathering		10.9 Main Parameters Used in Measuring Atmospheric Stability and Turbulence	188
7.1 Atmospheric Pollution, Acid Rain, Rainfall, and Crust	125	10.10 Plume Dispersion	191
7.2 Mechanism of Penetration of Rainwater and Evaporation	134	10.11 Stability Classes to Evaluate Atmospheric Stability References	191
7.3 Evaporation From Damp Monuments	135		194
7.4 Capillary Suction	139		
7.5 The Equilibrium Vapour Tension Over a Solution	139	11. Dry Deposition of Airborne Particulate Matter—Mechanisms and Effects	
7.6 Climate Cycles, Sea Spray, and Salt Damage	139	11.1 Introduction	197
7.7 Deliquescence—Crystallization Cycles	142	11.2 Random Walk and Brownian Diffusivity	199
7.8 Some Common Errors That Should Be Avoided	144	11.3 Brownian Deposition	201
References	150	11.4 Thermophoresis	202
Further Reading	152	11.5 Diffusiophoresis	204
8. Rising Damp Treatment and Prevention		11.6 Stefan Flow	205
8.1 Measures to Counteract Rising Damp	153	11.7 Gravitational Settling	207
8.2 Removing Causes	154	11.8 Electrophoresis	208
8.3 Hiding Effects	154	11.9 Photophoresis	210
8.4 Damp-Proof Course With Physical Barrier	155	11.10 Aerodynamic Deposition: Inertial Impaction and Interception	210
8.5 Damp-Proof Course With Chemical Barrier	155	11.11 Adhesion of Particles to Paintings or Other Surfaces	215
8.6 Increasing Wall Temperature	157	11.12 Vertical Distribution of Particles in Still Air and Their Resuspension by Turbulence	216
8.7 Ventilation Within the Wall	158	11.13 How Soiling Develops	218
8.8 Ventilating Outside the Wall	159	11.14 What Is the Most Appropriate Heating and Air Conditioning System to Avoid Soiling?	221
8.9 Dehumidifying Plasters	159	11.15 Inappropriate Positioning of Paintings	226
8.10 Active Electro-Osmosis	163	11.16 Uplifting of Giant Particles and Wind Erosion	227
8.11 Passive Electro-Osmosis	163	11.17 Kinetic Energy and Sand Blasting	232
8.12 Parapsychological Devices	164	References	233
8.13 Drying Damp Murals	165		
References			

II

ATMOSPHERIC STABILITY, POLLUTANT DISPERSION AND SOILING OF PAINTINGS AND MONUMENTS

9. Parameters to Describe Air Masses and Vertical Air Motions	
9.1 Equivalent Temperature	170
9.2 Adiabatic Gradients in Troposphere	170
9.3 Potential Temperature	171
9.4 Equivalent-Potential Temperature	173
9.5 Virtual Temperature	173
References	174
10. Atmospheric Stability and Pollutant Dispersion	
10.1 Introduction	175
10.2 Vertical Temperature Gradients and Plume Behaviour	177
10.3 Effects Due to Topographic Horizontal Inhomogeneity	179

RADIATION, LIGHT AND COLOURS

12. Radiometric Aspects of Solar Radiation, Blackbody, and Lamp Radiation	
12.1 Radiation Emitted by Bodies and Effects of the Absorbed Energy	237
12.2 Radiometric Temperature	239
12.3 Angular Distribution of Radiant Emission of Bodies	240
12.4 Attenuation of Light in the Atmosphere	241
12.5 Daily and Seasonal Cycles of Solar Radiation on Monuments	241
12.6 Length of Shadow	247
12.7 Electric Lamps for Cultural Heritage	249
12.8 Problems Encountered in Exhibition Lighting	255
12.9 Optical Filters and Optical Fibres	258
12.10 Degradation of Works of Art Caused by Light	264
12.11 Photographic Flash Light	267
12.12 Phototrophic Organisms	268

12.13 Photosensitivity Classes of Materials and Exhibition Lighting Recommended by International Standards References	
---	--

13. Photometric Aspects of Visible Light and Colours

13.1 Visible Light and Colour Perception	
13.2 Trichromatic Theory and Metamers	273
13.3 Munsell Colour System (HSV System)	275
13.4 CIE Chromaticity Diagram	276
13.5 The RGB Additive Light System	277
13.6 The CMY Subtractive Colour System	279
13.7 Transformation Between the RGB and CMY Colour Spaces	282
13.8 The Colour of Objects, Polychromies, and Paintings	285
13.9 Use of Complementary Colours in Visual Arts	286
13.10 Optics of Halftone Imaging and the Neo-Impressionism	288
13.11 How to Improve the Colour Rendering of Electric Lighting	293
13.12 What Is the Colour of Solar Light?	295
References	298

15.8 EN 16682 (2017) for Measurements of Moisture Content in Materials	354
271 15.9 EN 15999-1 (2013) for Design of Showcases	358
References	358

16. Introduction to Field Measurements

16.1 Field Observations and Computational Fluid Dynamics	273
16.2 Planning Field Measurements	275
16.3 Traditional and Innovative Sensors	276
16.4 Weather Stations and Observations for Monument Conservation	277
16.5 Statistical Representation of Data	279
16.6 Frequency of Observation	285
16.7 Length of Observation Period	286
16.8 Response Time of a Sensor	288
16.9 Drawing Air Temperature and Other Isolines	290
References	298

VI

MEASURING INSTRUMENTS AND THEIR DEVELOPMENT

17. Measuring Temperature

17.1 Part 1: Historical Overview: The Development of Early Thermometers and Basic Ideas	383
17.2 Part 2: Modern Technology to Measure Air Temperature	405
17.3 Part 3: Modern Technology to Measure Artwork Surface Temperature	414
References	426
Further Reading	429

18. Measuring Air Humidity

18.1 Part 1: Historical Overview: The Development of Early Hygrometers and Basic Ideas	431
18.2 Part 2: Modern Technology to Measure Air Humidity	441
References	455

19. Measuring Time of Wetness and Moisture in Materials

19.1 Measuring the Time of Wetness	459
19.2 Measuring Moisture in Materials	463
References	479

20. Measuring Wind and Indoor Air Motions

20.1 Part 1: Historical Overview: The Development of Early Anemometers and Basic Ideas	483
20.2 Part 2: Modern Technology to Measure Wind and Air Motions	499
References	509
Further Reading	511

21. Measuring Precipitation and Windborne Drops		Appendix 2: Summary of Key Equations to Calculate Humidity Variables	537
21.1 Part 1. Historical Overview: The Development of Early Rain Gauges and Basic Ideas	513	Appendix 3: Essential Glossary	539
21.2 Part 2. Modern Technology to Measure Precipitation	520	Relevant Objects, Museums, Monuments, etc.	
References	532	Exemplified in Figures	541
Appendix 1: List of Fundamental Constants Met in This Book	535	Index	547