Table of Contents

rking with alternative data

XIII

2

3

5

7

10

11

12

35

40

44

44

46

Preface

Chapter 1: Machine Learning for Trading – From Idea to Execution

The rise of ML in the investment industry From electronic to high-frequency trading Factor investing and smart beta funds Algorithmic pioneers outperform humans ML and alternative data Crowdsourcing trading algorithms Designing and executing an ML-driven strategy

Sourcing and managing data	13
From alpha factor research to portfolio management	13
Strategy backtesting	15
ML for trading – strategies and use cases	15
The evolution of algorithmic strategies	15
Use cases of ML for trading	16
Summary the learning work brief tooy at brieft end - tremitnee bris muthemoM	19
Chapter 2: Market and Fundamental Data – Sources and Techniques	21
Market data reflects its environment	22
Market microstructure – the nuts and bolts	23
How to trade – different types of orders	23
Where to trade – from exchanges to dark pools	24
Working with high-frequency data	26
How to work with Nasdaq order book data	26
Communicating trades with the FIX protocol	27
The Nasdag TotalView-ITCH data feed	27

[i]

From ticks to bars – how to regularize market data AlgoSeek minute bars – equity quote and trade data API access to market data Remote data access using pandas yfinance – scraping data from Yahoo! Finance

Quantopian		48
Zipline		48
Quandl		50
Other market data providers		50
How to work with fundamental data		51
Financial statement data		51
Other fundamental data sources		56
Efficient data storage with pandas		57
Summary		58
Chapter 3: Alternative Data for Fina	nce – Categories and Use Cases	59
The alternative data revolution		60
Sources of alternative data		62
Individuals		62
Business processes		63
Sensors		63
Criteria for evaluating alternative dat	oter 1: Machine Learning for Tradins	65
Quality of the signal content		65
Quality of the data		67
Technical aspects		68
The market for alternative data		69
Data providers and use cases	IL and alternative data	70
Working with alternative data	rowdsourcing trading algorithms	72
Scraping OpenTable data		72
Scraping and parsing earnings call tra	anscripts	2 77
Summary		80
Chapter 4: Financial Feature Engine	eering – How to Research	
Alpha Factors	for trading - strategies and use cases	81
Alpha factors in practice – from data	to signals	82
Building on decades of factor resear	se cases of ML for trading ho	84
Momentum and sentiment - the trend	l is vour friend	84

Value factors – hunting fundamental bargains 88 Volatility and size anomalies 90 Quality factors for quantitative investing 92 Engineering alpha factors that predict returns 94 How to engineer factors using pandas and NumPy 94 How to use TA-Lib to create technical alpha factors 99 Denoising alpha factors with the Kalman filter 100 How to preprocess your noisy signals using wavelets 104 From signals to trades – Zipline for backtests 106 How to backtest a single-factor strategy 106 Combining factors from diverse data sources 109 Separating signal from noise with Alphalens 111 Creating forward returns and factor quantiles 112 Predictive performance by factor quantiles 113

The information coefficient	115
Factor turnover	mot of woll 117
Alpha factor resources	118
Alternative algorithmic trading libraries	-aauso en 118
Summary How to use out of Summary How to use	6000 of Wol 119
Chapter 5: Portfolio Optimization and Performance Evaluation	n 121
How to measure portfolio performance	122
Capturing risk-return trade-offs in a single number	122
The fundamental law of active management	124
How to manage portfolio risk and return	125
The evolution of modern portfolio management	125
Mean-variance optimization	127
Alternatives to mean-variance optimization	131
Risk parity	134

Risk factor investment Hierarchical risk parity **Trading and managing portfolios with Zipline** Scheduling signal generation and trade execution Implementing mean-variance portfolio optimization Measuring backtest performance with pyfolio Creating the returns and benchmark inputs Walk-forward testing - out-of-sample returns regression using skleam Summary **Chapter 6: The Machine Learning Process** How machine learning from data works The challenge – matching the algorithm to the task Supervised learning – teaching by example Unsupervised learning – uncovering useful patterns Reinforcement learning - learning by trial and error The machine learning workflow

Basic walkthrough – k-nearest neighbors	154
Framing the problem – from goals to metrics	154
Collecting and preparing the data	160
Exploring, extracting, and engineering features	160
Selecting an ML algorithm	162
Design and tune the model	162
How to select a model using cross-validation	165
How to implement cross-validation in Python	166
Challenges with cross-validation in finance	168
Parameter tuning with scikit-learn and Yellowbrick	170
Summary	172
Chapter 7: Linear Models – From Risk Factors to Return Forecasts	173
From inference to prediction	174
Sayesian machine learning with Theathd	
[]	

The baseline model – multiple linear regression How to formulate the model How to train the model The Gauss-Markov theorem How to conduct statistical inference How to diagnose and remedy problems How to run linear regression in practice to measure portfolio beitorraa **OLS** with statsmodels turing risk-return trade-offs M e Sir Stochastic gradient descent with sklearn How to build a linear factor model From the CAPM to the Fama–French factor models Obtaining the risk factors Fama-Macbeth regression **Regularizing linear regression using shrinkage** How to hedge against overfitting How ridge regression works How lasso regression works How to predict returns with linear regression Preparing model features and forward returns Linear OLS regression using statsmodels Linear regression using scikit-learn **Ridge regression using scikit-learn** Lasso regression using sklearn Comparing the quality of the predictive signals **Linear classification** The logistic regression model How to conduct inference with statsmodels Predicting price movements with logistic regression 219 Summary Chapter 8: The ML4T Workflow – 221 From Model to Strategy Backtesting 222 How to backtest an ML-driven strategy 223 Backtesting pitfalls and how to avoid them 224 Getting the data right 225 Getting the simulation right 226 Getting the statistics right 227 How a backtesting engine works 228 Vectorized versus event-driven backtesting 230 Key implementation aspects 232 backtrader – a flexible tool for local backtests 232 Key concepts of backtrader's Cerebro architecture 235 How to use backtrader in practice 239 backtrader summary and next steps 239 Zipline – scalable backtesting by Quantopian

Calendars and the Pipeline for robust simulations	240
Ingesting your own bundles with minute data	242
The Pipeline API – backtesting an ML signal	245
How to train a model during the backtest	250
Instead of How to use	254
Summary	254
Chapter 9: Time-Series Models for Volatility Forecasts and	
Statistical Arbitrage	255
Tools for diagnostics and feature extraction	256
How to decompose time-series patterns	257
Rolling window statistics and moving averages	258
How to measure autocorrelation	259
How to diagnose and achieve stationarity	260
Transforming a time series to achieve stationarity	261

261 Handling instead of How to handle 263 **Time-series transformations in practice** 265 Univariate time-series models 266 How to build autoregressive models How to build moving-average models 267 How to build ARIMA models and extensions 268 270 How to forecast macro fundamentals 272 How to use time-series models to forecast volatility 276 **Multivariate time-series models** 277 Systems of equations 277 The vector autoregressive (VAR) model 278 Using the VAR model for macro forecasts Cointegration – time series with a shared trend 281 282 The Engle-Granger two-step method started - adaptive The Johansen likelihood-ratio test 282 283 Statistical arbitrage with cointegration

How to select and trade comoving asset pairs	283
Pairs trading in practice	285
Preparing the strategy backtest	288
Backtesting the strategy using backtrader	292
Extensions – how to do better	294
Summary	294
Chapter 10: Bayesian ML – Dynamic Sharpe Ratios	
and Pairs Trading	295
How Bayesian machine learning works	296
How to update assumptions from empirical evidence	297
Exact inference – maximum a posteriori estimation	298
Deterministic and stochastic approximate inference	301
Probabilistic programming with PyMC3	305

The PyMC3 workflow: predicting a recession	enileqi9 ent bris ansbriels 305
Bayesian ML for trading	718 Ingesting your own bundles
Bayesian Sharpe ratio for performance comparison	teetlosd - IRA enilegi9 en 317
Bayesian rolling regression for pairs trading	principleborn a niert of wol 320
Stochastic volatility models	eau of wold to bestar 323
Summary	326
Chapter 11: Random Forests – A Long-Short Str	ategy
for Japanese Stocks	opentidal A leoitei 327
Decision trees – learning rules from data	et bris soltson paib tot slo 328
How trees learn and apply decision rules	see en i eeoomooeb of wol 328
Decision trees in practice	ne soltaiste vooniv philo 330
Overfitting and regularization	sencodus entreem of wol 336
Hyperparameter tuning	338
Random forests – making trees more reliable	tasines emit a primotenal 345

Why ensemble models perform better 345 346 **Bootstrap aggregation** 349 How to build a random forest 350 How to train and tune a random forest 352 Feature importance for random forests 352 Out-of-bag testing 353 Pros and cons of random forests 353 Long-short signals for Japanese stocks 354 The data – Japanese equities 355 The ML4T workflow with LightGBM The strategy – backtest with Zipline 362 364 Summary 365 **Chapter 12: Boosting Your Trading Strategy** 366 Getting started – adaptive boosting 367 The AdaBoost algorithm Using AdaBoost to predict monthly price moves 368 370 Gradient boosting – ensembles for most tasks 372 How to train and tune GBM models 374 How to use gradient boosting with sklearn 378 Using XGBoost, LightGBM, and CatBoost 379 How algorithmic innovations boost performance A long-short trading strategy with boosting 383 383 Generating signals with LightGBM and CatBoost 391 Inside the black box - interpreting GBM results 399 Backtesting a strategy based on a boosting ensemble 401 Lessons learned and next steps 402 **Boosting for an intraday strategy** 402 Engineering features for high-frequency data 404 Minute-frequency signals with LightGBM 405 Evaluating the trading signal quality

406 Summary **Chapter 13: Data-Driven Risk Factors and Asset Allocation with Unsupervised Learning** 407 408 **Dimensionality reduction** The curse of dimensionality 409 411 Linear dimensionality reduction 418 Manifold learning – nonlinear dimensionality reduction 421 **PCA for trading** 421 **Data-driven risk factors** 424 Eigenportfolios 426 Clustering k-means clustering 427 429 **Hierarchical clustering** 431 **Density-based clustering**

Gaussian mixture models	432
Hierarchical clustering for optimal portfolios	433
How hierarchical risk parity works	433
Backtesting HRP using an ML trading strategy	435
Summary	438
Chapter 14: Text Data for Trading – Sentiment Analysis	439
ML with text data – from language to features	440
Key challenges of working with text data	440
The NLP workflow	441
Applications	443
From text to tokens – the NLP pipeline	443
NLP pipeline with spaCy and textacy	444
NLP with TextBlob	448
Counting tokens – the document-term matrix	449
The bag-of-words model	450
Document-term matrix with scikit-learn	451

455 Key lessons instead of lessons learned 455 **NLP for trading** 456 The naive Bayes classifier 457 **Classifying news articles** 458 Sentiment analysis with Twitter and Yelp data 462 Summary Chapter 15: Topic Modeling – Summarizing Financial News 463 464 Learning latent topics – Goals and approaches 465 Latent semantic indexing 466 How to implement LSI using sklearn 468 Strengths and limitations 469 **Probabilistic latent semantic analysis** 470 How to implement pLSA using sklearn

Table of Contents

Strengths and limitations Latent Dirichlet allocation How LDA works How to evaluate LDA topics How to implement LDA using sklearn How to visualize LDA results using pyLDAvis How to implement LDA using Gensim Modeling topics discussed in earnings calls Data preprocessing Model training and evaluation Running experiments Topic modeling for with financial news Summary

Oberten 4C. Wend Encheddinge for Eeminge Cells and CEC Eilinge

Chapter 16: word Embeddings for Earnings Calls and SEC Fillings	403
How word embeddings encode semantics	484
How neural language models learn usage in context	485
word2vec – scalable word and phrase embeddings	485
Evaluating embeddings using semantic arithmetic	487
How to use pretrained word vectors	489
GloVe – Global vectors for word representation	489
Custom embeddings for financial news	491
Preprocessing – sentence detection and n-grams	492
The skip-gram architecture in TensorFlow 2	493
Visualizing embeddings using TensorBoard	496
How to train embeddings faster with Gensim	497
word2vec for trading with SEC filings	499
Preprocessing – sentence detection and n-grams	500
Model training	501
Sentiment analysis using doc2vec embeddings	503
Creating deelwee input from Veln centiment data	503

Training a doc2vec model Training a classifier with document vectors Lessons learned and next steps New frontiers – pretrained transformer models Attention is all you need BERT – towards a more universal language model Trading on text data – lessons learned and next steps Summary Chapter 17: Deep Learning for Trading Deep learning – what's new and why it matters Hierarchical features tame high-dimensional data DL as representation learning How DL relates to ML and Al Designing an NN

A simple feedforward neural network architecture	519
Key design choices	520
How to regularize deep NNs	522
Training faster – optimizations for deep learning	523
Summary – how to tune key hyperparameters	525
A neural network from scratch in Python	526
The input layer	526
The hidden layer	527
The output layer	528
Forward propagation	529
The cross-entropy cost function	529
How to implement backprop using Python	529
Popular deep learning libraries	534
Leveraging GPU acceleration	534
How to use TensorFlow 2	535
How to use TensorBoard	537
How to use PyTorch 1.4	538
Alternative options	541
Optimizing an NN for a long-short strategy	542
Engineering features to predict daily stock returns	542
Defining an NN architecture framework	542
Cross-validating design options to tune the NN	543
Evaluating the predictive performance	545
Backtesting a strategy based on ensembled signals	547
How to further improve the results	549
Summary	549
Chapter 18: CNNs for Financial Time Series and Satellite Images	551
How CNNs learn to model grid-like data	552
From hand-coding to learning filters from data	553
How the elements of a convolutional laver operate	554
The evolution of CNN architectures: key innovations	558
CNNs for satellite images and object detection	559
LeNet5 – The first CNN with industrial applications	560
AlexNet – reigniting deep learning research	563
Transfer learning – faster training with less data	565
Object detection and segmentation	573
Object detection in practice	573
CNNs for time-series data – predicting returns	577
An autoregressive CNN with 1D convolutions	577
CNN-TA – clustering time series in 2D format	581
Summary	589
Chapter 19: RNNs for Multivariate Time Series and	
Sentiment Analysis	591
How recurrent neural note work	592
now recurrent neural nets work	OUL

Unfolding a computational graph with cycles 594 **Backpropagation through time** 594 **Alternative RNN architectures** 595 How to design deep RNNs 596 The challenge of learning long-range dependencies 597 Gated recurrent units 599 599 **RNNs for time series with TensorFlow 2** Univariate regression – predicting the S&P 500 600 How to get time series data into shape for an RNN 600 rward propagation Stacked LSTM – predicting price moves and returns 605 Multivariate time-series regression for macro data 611 **RNNs for text data** 614 LSTM with embeddings for sentiment classification 614 Sentiment analysis with pretrained word vectors 617

Predicting returns from SEC filing embeddings Summary Chapter 20: Autoencoders for Conditional Risk Factors and Asset Pricing

Autoencoders for nonlinear feature extraction Generalizing linear dimensionality reduction Convolutional autoencoders for image compression Managing overfitting with regularized autoencoders Fixing corrupted data with denoising autoencoders Seq2seq autoencoders for time series features Generative modeling with variational autoencoders **Implementing autoencoders with TensorFlow 2** How to prepare the data One-layer feedforward autoencoder Feedforward autoencoder Feedforward autoencoder

619

624

Convolutional autoencoders	636
Denoising autoencoders	637
A conditional autoencoder for trading	638
Sourcing stock prices and metadata information	639
Computing predictive asset characteristics	641
Creating the conditional autoencoder architecture	643
Lessons learned and next steps	648
Summary	648
Chapter 21: Generative Adversarial Networks for Synthetic	
Time-Series Data	649
Creating synthetic data with GANs	650
Comparing generative and discriminative models	651
Adversarial training – a zero-sum game of trickery	651
The rapid evolution of the GAN architecture zoo	652

[x]

GAN applications to images and time-series data	653
How to build a GAN using TensorFlow 2	655
Building the generator network	655
Creating the discriminator network	656
Setting up the adversarial training process	657
Evaluating the results	660
TimeGAN for synthetic financial data	660
Learning to generate data across features and time	661
Implementing TimeGAN using TensorFlow 2	663
Evaluating the quality of synthetic time-series data	672
Lessons learned and next steps	678
Summary	678
Chapter 22: Deen Reinforcement Learning -	
Building a Trading Agent	679

3 - 3 680 **Elements of a reinforcement learning system** 681 The policy – translating states into actions 681 Rewards – learning from actions 682 The value function – optimal choice for the long run 682 With or without a model - look before you leap? 682 How to solve reinforcement learning problems 683 Key challenges in solving RL problems Fundamental approaches to solving RL problems 683 Solving dynamic programming problems 684 684 Finite Markov decision problems 687 **Policy iteration** 688 Value iteration 688 Generalized policy iteration Dynamic programming in Python 689 694 Q-learning – finding an optimal policy on the go Exploration versus exploitation – E-greedy policy 695

The Q-learning algorithm	695
How to train a Q-learning agent using Python	695
Deep RL for trading with the OpenAl Gym	696
Value function approximation with neural networks	697
The Deep Q-learning algorithm and extensions	697
Introducing the OpenAI Gym	699
How to implement DDQN using TensorFlow 2	700
Creating a simple trading agent	704
How to design a custom OpenAl trading environment	705
Deep Q-learning on the stock market	709
Lessons learned	711
Summary	711
Chapter 23: Conclusions and Next Steps	713
Key takeaways and lessons learned	714

Table of Contents

Data is the single most important ingredient 715 Domain expertise - telling the signal from the noise 716 ML is a toolkit for solving problems with data 717 Beware of backtest overfitting 719 How to gain insights from black-box models 719 **ML for trading in practice** 720 aluating the results Data management technologies 720 ML tools 722 722 **Online trading platforms** Conclusion 723 **Appendix: Alpha Factor Library** ssons learned and next steps 725 **Common alpha factors implemented in TA-Lib** 726 A key building block - moving averages 726 Overlap studies – price and volatility trends 729 Momentum indicators 733 Volume and liquidity indicators 741 Volatility indicators 743 Fundamental risk factors 744 e value function - optimal choic WorldQuant's quest for formulaic alphas 745 th or without a model -- look Cross-sectional and time-series functions 745 Formulaic alpha expressions 747 **Bivariate and multivariate factor evaluation** 749 Information coefficient and mutual information 749 Feature importance and SHAP values 750 Comparison – the top 25 features for each metric 750 Financial performance – Alphalens 752 References 753 Index 769

k68 Exploration versus exploitation – E-greedy policybooneous branchiner geed 695
686 The Q-learning agorithm and extension responsed to train a Q-learning agent using Python ereborneous traditions 296
686 Kabeep RL for trading with the OpenAl Gyngnibert rol rebooneous traditions 296
686 Value function approximation with theoreal networksom one scole social gnore 2 697
686 Naiue function approximation with theoreal networksom one scole social gnore 2 697
686 Value function approximation with theoreal networksom one scole social gnore 2 697
686 Naiue function approximation with theoreal networksom one scole social gnore 2 697
686 How to implement DDQN using TensorFlow 2 equits then berneal anoscal 700
686 How to implement DDQN using TensorFlow 2 equits then berneal anoscal 700
686 How to design graneter 2 equits the protein and extension environments and grane 2 for a simple trading agent extension and extension and extensions in a systemet and and a simple trading agent and a protein approximation appro