Contents

Preface	X
PERMIT	^

Foreword XIII

1	Introduction: Green Chemistry and Catalysis 1
1.1	Introduction 1
1.2.	E Factors and Atom Efficiency 2
1.3	The Role of Catalysis 5
1.4	The Development of Organic Synthesis 8
1.5	Catalysis by Solid Acids and Bases 10
1.6	Catalytic Reduction 14
1.7	Catalytic Oxidation 18
1.8	Catalytic C-C Bond Formation 23
1.9	The Question of Solvents: Alternative Reaction Media 27
1.10	Biocatalysis 29
1.11	Renewable Raw Materials and White Biotechnology 34
1.12	Enantioselective Catalysis 35
1.13	Risky Reagents 38
1.14	Process Integration and Catalytic Cascades 39
	References 43
2	Solid Acids and Bases as Catalysts 49
2.1	Introduction 49
2.2	Solid Acid Catalysis 50
2.2.1	Acidic Clays 50
2.2.2	Zeolites and Zeotypes: Synthesis and Structure 52
2.2.3	Zeolite-catalyzed Reactions in Organic Synthesis 59
2.2.3.1	Electrophilic Aromatic Substitutions 60
2.2.3.2	Additions and Eliminations 65
2.2.3.3	Rearrangements and Isomerizations 67
2.2.3.4	Cyclizations 70
2.2.4	Solid Acids Containing Surface SO ₃ H Functionality 71
2.2.5	Heteropoly Acids 75

Green Chemistry and Catalysis. I. Arends, R. Sheldon, U. Hanefeld Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-30715-9

Contents	
2.3	Solid Base Catalysis 76
2.3.1	Anionic Clays: Hydrotalcites 76
2.3.2	Basic Zeolites 80
2.3.3	Organic Bases Attached to Mesoporous Silicas 82
2.4	Other Approaches 85
	References 87
3	Catalytic Reductions 91
3.1	Introduction 91
3.2	Heterogeneous Reduction Catalysts 92
3.2.1	General Properties 92
3.2.2	Transfer Hydrogenation Using Heterogeneous Catalysts 100
3.2.3	Chiral Heterogeneous Reduction Catalysts 101
3.3	Homogeneous Reduction Catalysts 104
3.3.1	Wilkinson Catalyst 104
3.3.2	Chiral Homogeneous Hydrogenation Catalysts and Reduction
J.J.L.	of the C=C Double Bond 106
3.3.3	Chiral Homogeneous Catalysts and Ketone Hydrogenation 111
3.3.4	Imine Hydrogenation 113
3.3.5	Transfer Hydrogenation using Homogeneous Catalysts 114
3.4	Biocatalytic Reductions 116
3.4.1	Introduction 116
3.4.2	Enzyme Technology in Biocatalytic Reduction 119
3.4.3	Whole Cell Technology for Biocatalytic Reduction 125
3.5	Conclusions 127
	References 127
	ICICICICOS 12.7
4	Catalytic Oxidations 133
4.1	Introduction 133
4.2	Mechanisms of Metal-catalyzed Oxidations:
	General Considerations 134
4.2.1	Homolytic Mechanisms 136
4.2.1.1	Direct Homolytic Oxidation of Organic Substrates 137
4.2.2	Heterolytic Mechanisms 138
4.2.2.1	Catalytic Oxygen Transfer 139
4.2.3	Ligand Design in Oxidation Catalysis 141
4.2.4	Enzyme Catalyzed Oxidations 142
4.3	Alkenes 147
4.3.1	Epoxidation 147
4.3.1.1	Tungsten Catalysts 149
4.3.1.2	Rhenium Catalysts 150
4.3.1.3	Ruthenium Catalysts 151
4.3.1.4	Manganese Catalysts 152
4.3.1.5	Iron Catalysts 153
4.3.1.6	Selenium and Organocatalysts 154

4.3.1.7	Hydrotalcite and Alumina Systems 156
4.3.1.8	Biocatalytic Systems 156
4.3.2	Vicinal Dihydroxylation 156
4.3.3	Oxidative Cleavage of Olefins 158
4.3.4	Oxidative Ketonization 159
4.3.5	Allylic Oxidations 161
4.4	Alkanes and Alkylaromatics 162
4.4.1	Oxidation of Alkanes 163
4.4.2	Oxidation of Aromatic Side Chains 165
4.4.3	Aromatic Ring Oxidation 168
4.5	Oxygen-containing Compounds 170
4.5.1	Oxidation of Alcohols 170
4.5.1.1	Ruthenium Catalysts 172
4.5.1.2	Palladium-catalyzed Oxidations with O ₂ 176
4.5.1.3	Gold Catalysts 178
4.5.1.4	Copper Catalysts 179
4.5.1.5	Other Metals as Catalysts for Oxidation with O ₂ 181
4.5.1.6	Catalytic Oxidation of Alcohols with Hydrogen Peroxide 182
4.5.1.7	Oxoammonium Ions in Alcohol Oxidation 183
4.5.1.8	Biocatalytic Oxidation of Alcohols 184
4.5.2	Oxidative Cleavage of 1,2-Diols 185
4.5.3	Carbohydrate Oxidation 185
4.5.4	Oxidation of Aldehydes and Ketones 186
4.5.4.1	
4.5.5	Oxidation of Phenols 190
4.5.6	Oxidation of Ethers 191
4.6	Heteroatom Oxidation 192
4.6.1	Oxidation of Amines 192
4.6.1.1	Primary Amines 192
4.6.1.2	Secondary Amines 193
4.6.1.3	Tertiary Amines 193
4.6.1.4	Amides 194
4.6.2	Sulfoxidation 194
4.7	Asymmetric Oxidation 195
4.7.1	Asymmetric Epoxidation of Olefins 196
4.7.2	Asymmetric Dihydroxylation of Olefins 204
4.7.3	Asymmetric Sulfoxidation 207
4.7.4	Asymmetric Baeyer-Villiger Oxidation 208
4.5	Conclusion 211
	References 212
5	Catalytic Carbon Carbon Bond Formation 223
5.1	Introduction 223
5.2	Enzymes for Carbon–Carbon Bond Formation 223
5.2.1	Enzymatic Synthesis of Cyanohydrins 224

ı	Contents	
	5.2.1.1	Hydroxynitrile Lyases 225
	5.2.1.2	Lipase-based Dynamic Kinetic Resolution 228
	5.2.2	Enzymatic Synthesis of a-Hydroxyketones (Acyloins) 229
	5.2.3	Enzymatic Synthesis of a-Hydroxy Acids 234
	5.2.4	Enzymatic Synthesis of Aldols
		(β-Hydroxy Carbonyl Compounds) 235
	5.2.4.1	DHAP-dependent Aldolases 236
	5.2.4.2	PEP- and Pyruvate-dependent Aldolases 241
	5.2.4.3	Glycine-dependent Aldolases 242
	5.2.4.4	Acetaldehyde-dependent Aldolases 242
	5.2.5	Enzymatic Synthesis of β -Hydroxynitriles 244
	5.3	Transition Metal Catalysis 245
	5.3.1	Carbon Monoxide as a Building Block 245
	5.3.1.1	Carbonylation of R-X (CO "Insertion/R-migration") 245
	5.3.1.2	Aminocarbonylation 249
	5.3.1.3	Hydroformylation or "Oxo" Reaction 250
	5.3.1.4	Hydroaminomethylation 251
	5.3.1.5	Methyl Methacrylate via Carbonylation Reactions 253
	5.3.2	Heck-type Reactions 254
	5.3.2.1	Heck Reaction 256
	5.3.2.2	Suzuki and Sonogashira Reaction 257
	5.3.3	Metathesis 258
	5.3.3.1	Metathesis involving Propylene 259
	5.3.3.2	Ring-opening Metathesis Polymerization (ROMP) 259
	5.3.3.3	Ring-closing Metathesis (RCM) 260
	5.4	Conclusion and Outlook 261
		References 261
	6	Hydrolysis 265
	6.1	Introduction 265
	6.1.1	Stereoselectivity of Hydrolases 266
	6.1.2	Hydrolase-based Preparation of Enantiopure Compounds 268
	6.1.2.1	Kinetic Resolutions 268
	6.1.2.2	Dynamic Kinetic Resolutions 269
	6.1.2.3	Kinetic Resolutions Combined with Inversions 270
	6.1.2.4	Hydrolysis of Symmetric Molecules and the "meso-trick" 271
	6.2	Hydrolysis of Esters 271
	6.2.1	Kinetic Resolutions of Esters 272
	6.2.2	Dynamic Kinetic Resolutions of Esters 274
	6.2.3	Kinetic Resolutions of Esters Combined with Inversions 276
	6.2.4	Hydrolysis of Symmetric Esters and the "meso-trick" 278
	6.3	Hydrolysis of Amides 279
	6.3.1	Production of Amino Acids by (Dynamic) Kinetic Resolution 280
	6.3.1.1	The Acylase Process 280
		The Amidase Process 281

6.3.1.3	The Hydantoinase Process 282
6.3.1.4	Cysteine 283
6.3.2	Enzyme-catalysed Hydrolysis of Amides 283
6.3.3	Enzyme-catalysed Deprotection of Amines 285
6.4	Hydrolysis of Nitriles 286
6.4.1	Nitrilases 286
6.4.2	Nitrile Hydratases 287
6.5	Conclusion and Outlook 290
	References 290
7	Catalysis in Novel Reaction Media 295
7.1	Introduction 295
7.1.1	Why use a solvent? 295
7.1.2	Choice of Solvent 296
7.1.3	Alternative Reaction Media and Multiphasic Systems 298
7.2	Two Immiscible Organic Solvents 299
7.3	Aqueous Biphasic Catalysis 300
7.3.1	Olefin Hydroformylation 302
7.3.2	Hydrogenation 304
7.3.3	Carbonylations 306
7.3.4	Other C-C Bond Forming Reactions 307
7.3.5	Oxidations 309
7.4	Fluorous Biphasic Catalysis 309
7.4.1	Olefin Hydroformylation 310
7.4.2	Other Reactions 311
7.5	Supercritical Carbon Dioxide 313
7.5.1	Supercritical Fluids 313
7.5.2	Supercritical Carbon Dioxide 314
7.5.3	Hydrogenation 314
7.5.4	Oxidation 316
7.5.5	Biocatalysis 317
7.6	Ionic Liquids 318
7.7	Biphasic Systems with Supercritical Carbon Dioxide 322
7.8	Thermoregulated Biphasic Catalysis 323
7.9	Conclusions and Prospects 323
	References 324
8	Chemicals from Renewable Raw Materials 329
8.1	Introduction 329
8.2	Carbohydrates 332
8.2.1	Chemicals from Glucose via Fermentation 333
8.2.2	Ethanol 335
8.2.2.1	Microbial Production of Ethanol 338
8.2.2.2	Green Aspects 339
8.2.3	Lactic Acid 340

Contents	
8.2.4	1,3-Propanediol 342
8.2.5	3-Hydroxypropanoic Acid 346
8.2.6	Synthesizing Aromatics in Nature's Way 347
8.2.7	Aromatic a-Amino Acids 349
8.2.7	Indigo: the Natural Color 353
8.2.8	Pantothenic Acid 355
8.2.9	The β -Lactam Building Block 7-Aminodesacetoxycephalosporanic
	Acid 358
8.2.9	Riboflavin 361
8.3	Chemical and Chemoenzymatic Transformations of Carbohydrates
	into Fine Chemicals and Chiral Building Blocks 363
8.3.1	Ascorbic Acid 364
8.3.2	Carbohydrate-derived C3 and C4 Building Blocks 368
8.3.3	5-Hydroxymethylfurfural and Levulinic Acid 370
8.4	Fats and Oils 372
8.4.1	Biodiesel 373
8.4.2	Fatty Acid Esters 374
8.5	Terpenes 375
8.6	Renewable Raw Materials as Catalysts 378
8.7	Green Polymers from Renewable Raw Materials 379
8.8	Concluding Remarks 380
	References 380
Δ	Process Integration and Cascade Catalysis 389
9.1	Introduction 389
9.2	Dynamic Kinetic Resolutions by Enzymes Coupled
1.2	with Metal Catalysts 390
9.3	Combination of Asymmetric Hydrogenation
	with Enzymatic Hydrolysis 401
9.4	Catalyst Recovery and Recycling 402
9.5	Immobilization of Enzymes: Cross-linked Enzyme Aggregates
	(CLEAs) 405
9.6	Conclusions and Prospects 406
J. ()	References 407
	references 707
10	Epilogue: Future Outlook 409
10.1	Green Chemistry: The Road to Sustainability 409
10.2	Catalysis and Green Chemistry 410
10.3	The Medium is the Message 412
10.4	Metabolic Engineering and Cascade Catalysis 413
10.5	Concluding Remarks 413
	References 414